Меню Рубрики

Марковские случайные процессы и потоки событий. Курсовая работа: Система массового обслуживания с ограниченным временем ожидания Простейшие потоки марковские процессы и цепи решение

Процесс работы СМО представляет собой случайный процесс. Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.

Процесс называется процессом с дискретными состояниями, если его возможные состояния S1, S2, S3… можно заранее перечислить, а переходы системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называется марковским или случайным процессом без последствия, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Пример марковского процесса: система S - счетчик в такси. Состояние системы в момент t характеризуется числом километров, пройденных автомобилем до данного момента. Пусть в момент t0 счетчик показывает S0. Вероятность того, что в момент t>t0 счетчик покажет то или иное число километров (точнее соответствующее число рублей) S1 зависит от S0, но не зависит от того, в какие моменты времени изменялись показания счетчика до момента t0.

В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемой графом состояний. Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния (рис. 1).

Рисунок 1 - Граф состояний

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятности - понятием потока событий.

Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени

Примерами могут быть:

  • - поток вызовов на телефонной станции;
  • - поток включений приборов в бытовой электросети;
  • - поток грузовых составов, поступающих на железнодорожную станцию:
  • - поток неисправностей (сбоев) вычислительной машины;
  • - поток выстрелов, направляемых на цель.

Поток характеризуется интенсивностью л - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные промежутки времени. Такой поток сравнительно редко встречается на практике, но представляет определенный интерес как предельный случай.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и _ число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последствия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последствия (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени?t двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последствия.

Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается при наложении (суперпозиции) достаточно большого числа n независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям) получается поток, близкий к простейшему с интенсивностью л, равной сумме интенсивностей входящих потоков:

Рассмотрим на оси времени простейший поток событий как неограниченную последовательность случайных точек. (Рис. 2)

Рисунок 2 - Поток событий

Можно показать, что для простейшего потока число m событий (точек), попадающих на произвольный участок времени ф, распределено по закону Пуассона

для которого математическое ожидание случайной величины равно ее дисперсии:

В частности, вероятность того, что за время ф не произойдет ни одного события (m = 0), равна

Найдем распределение интервала времени T между произвольными двумя соседними событиями простейшего потока.

В соответствии с формулой вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна

а вероятность противоположного события, т.е. функция распределения случайной величины T, есть

Плотность вероятности случайной величины есть производная ее функции распределения:

Распределение, задаваемое плотностью вероятности или функцией распределения, называется показательным (или экспоненциальным). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины

и обратно по величине интенсивности потока л.

Важнейшее свойство показательного распределения (присуще только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время ф, то это никак не влияет на закон распределения оставшейся части промежутка (Т-ф): он будет таким же, как и закон распределения всего промежутка Т.

Иначе говоря, для интервала времени Т между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части.

Для простейшего потока с интенсивностью л вероятность попадания на элементарный (малый) отрезок времени?t хотя бы одного события потока равна согласно

В предыдущих лекциях мы научились имитировать наступление случайных событий. То есть мы можем разыграть — какое из возможных событий наступит и в каком количестве. Чтобы это определить, надо знать статистические характеристики появления событий, например, такой величиной может быть вероятность появления события, или распределение вероятностей разных событий, если типов этих событий бесконечно много.

Но часто еще важно знать, когда конкретно наступит то или иное событие во времени.

Когда событий много и они следуют друг за другом, то они образуют поток . Заметим, что события при этом должны быть однородными, то есть похожими чем-то друг на друга. Например, появление водителей на АЗС, желающих заправить свой автомобиль. То есть, однородные события образуют некий ряд. При этом считается, что статистическая характеристика этого явления (интенсивность потока событий) задана. Интенсивность потока событий указывает, сколько в среднем происходит таких событий за единицу времени. Но когда именно произойдет каждое конкретное событие надо определить методами моделирования. Важно, что, когда мы сгенерируем, например, за 200 часов 1000 событий, их количество будет равно примерно величине средней интенсивности появления событий 1000/200 = 5 событий в час, что является статистической величиной, характеризующей этот поток в целом.

Интенсивность потока в некотором смысле является математическим ожиданием количества событий в единицу времени. Но реально может так оказаться, что в один час появится 4 события, в другой — 6, хотя в среднем получается 5 событий в час, поэтому одной величины для характеристики потока недостаточно. Второй величиной, характеризующей насколько велик разброс событий относительно математического ожидания, является, как и ранее, дисперсия. Собственно именно эта величина определяет случайность появления события, слабую предсказуемость момента его появления. Про эту величину мы расскажем в следующей лекции.

Поток событий — это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени. На оси времени эти события выглядят как показано на рис. 28.1 .


Примером потока событий могут служить последовательность моментов касания взлетной полосы самолетами, прилетающими в аэропорт.

Интенсивность потока λ — это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: λ = N /T н , где N — число событий, произошедших за время наблюдения T н .

Если интервал между событиями τ j равен константе или определен какой-либо формулой в виде: t j = f (t j – 1) , то поток называется детерминированным . Иначе поток называется случайным .

Случайные потоки бывают:

  • ординарные : вероятность одновременного появления двух и более событий равна нулю;
  • стационарные : частота появления событий λ (t ) = const(t ) ;
  • без последействия : вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Пуассоновский поток

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ (t ) = const(t ) , то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ) , то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0 ) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С ) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x – σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час] ). Необходимо промоделировать этот процесс в течение T н = 100 часов . m = 1/λ = 24/8 = 3 , то есть в среднем одна деталь за три часа. Заметим, что σ = 3 . На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3 .

Моделирование неординарных потоков событий

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что M k = 10 , σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6 ), нужно вставить фрагмент, показанный на рис. 28.8 .

Пример 2 . Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2 ? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8 , σ = 2 (см. лекцию 25). До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр. ср. = 24 · (t 1 пр. + t 2 пр. + t 3 пр. + t 4 пр. + … + t N пр.)/T н .

Задание 1 . Меняя величину σ , установите зависимость T пр. ср. (σ ) . Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2 . Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.

Моделирование нестационарных потоков событий

В ряде случаев интенсивность потока может меняться со временем λ (t ) . Такой поток называется нестационарным . Например, среднее количество за час машин скорой помощи, покидающих станцию по вызовам населения большого города, в течение суток может быть различным. Известно, например, что наибольшее количество вызовов падает на интервалы с 23 до 01 часа ночи и с 05 до 07 утра, тогда как в остальные часы оно вдвое меньше (см. рис. 28.11 ).

В этом случае распределение λ (t ) может быть задано либо графиком, либо формулой, либо таблицей. А в алгоритме, показанном на рис. 28.6 , в место, помеченное (**), нужно будет вставить фрагмент, показанный на рис. 28.12 .

Потоки событий Это последовательность событий происходящих одно за другим в определенные интервалы времени. T - средняя величина времени между соседними событиями Если T=const, то события в потоке распределены равномерно. - интенсивность потока, т. е. среднее число событий, происходящих в единицу времени.

Потоки событий Стационарный Количество событий, попадающих на любой произвольный интервал времени не зависит от положения на числовой оси, а зависит только от его ширины Без последействия Для любых двух непересекающихся временных интервалов количество событий, попадающих на один из них, не зависит от того, сколько событий произошло на другом интервале Регулярный Противоположный потоку без последействия (с последействием)

Потоки событий Ординарный В любой момент времени происходит одно и только одно событие, т. е. вероятность появления на бесконечно малом временном интервале двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного события Пуассоновский Нестационарный, ординарный поток без последействия Простейший Стационарный, ординарный поток без последействия, для которого число событий, появляющихся за промежуток времени, распределено по закону Пуассона, а интервалы времени между двумя последовательными событиями характеризуются показательным распределением. Это стационарный пуассоновский поток.

Экономическое применение Современные финансово – банковские операции предполагают погашение задолженности в рассрочку, периодическое поступление доходов от инвестиций. Такого рода последовательность, или ряд платежей, можно назвать потоком платежей. Поток платежей все члены которого – положительные величины, а временные интервалы между платежами одинаковы, называют финансовой рентой. Рентой является последовательность получения процентов по облигациям, платежи по потребительскому кредиту, выплаты в рассрочку страховых премий. Характеристики потока платежей: интервал между двумя соседними платежами, вероятности выплаты платежа, широко применяются в различных финансовых расчетах. Без них невозможно разработать план последовательного погашения задолженности, измерить финансовую эффективность проекта, осуществить сравнение или безубыточное изменение условий контрактов.

Задача Для анализа изменения с течением времени размера текущего фонда банка, занимающегося выдачей долгосрочных ссуд, важно обладать информацией о процессе поступления в банк выплат по займам. Наблюдение за банком в предшествующем периоде показало, что число поступающих в банк выплат за любой промежуток времени не зависит от момента времени с которого начался отсчет промежутка времени, а зависит только от его продолжительности. Ожидаемое число выплат в банк за неделю равно 2. Исследуем, какова вероятность поступления в банк за месяц 7 выплат и найдем вероятность того, что интервал времени между двумя соседними выплатами меньше 2 дней.

Решение По условию задачи поток выплат можно считать простейшим с интенсивностью =2 (за неделю). Следовательно, число выплат, поступивших за промежуток времени =4 недели (1 месяц), распределено по закону Пуассона. Интервалы времени между двумя последовательными выплатами в простейшем потоке имеют показательный закон распределения.

Решение Пусть X() - дискретная случайная величина, представляющая собой число выплат, поступивших за промежуток времени. Она распределена по закону Пуассона. M(X)=D(X)= Тогда - вероятность того, что за промежуток времени в потоке наступят точно m событий равна Следовательно, при интенсивности потока выплат =2 вероятность поступления в банк за месяц (=4) 7 выплат (m=7) равна

Решение Пусть непрерывная случайная величина T - промежуток времени между двумя любыми соседними выплатами (событиями простейшего потока). Она имеет показательный закон распределения. M(T)=1/ , D(T)=1/ 2 Тогда вероятность P(T

Задачи для самостоятельного решения 1. Обычно студент приходит на остановку ровно в 8 часов утра и, сев в первый пришедший автобус, идущий в направлении университета, вовремя прибывает на занятия, которые начинаются ровно в 9 утра. Интервалы движения автобуса составляют в среднем 10 минут, а время в пути автобуса равно 30 минутам. Пусть поток автобусов является простейшим. Найдите вероятность того, что студент все же опоздает на занятия.

Задачи для самостоятельного решения 2. Поток заявок, поступающих в некоторую систему массового обслуживания, достаточно моделируется простейшим. При изучении опытных данных рассматривалось 200 выбранных наудачу промежутков времени длиной в 2 мин. Оказалось, что число тех из них, в которых не было зарегистрировано ни одной заявки, равно 27. Найти математическое ожидание и среднее квадратическое отклонение числа заявок за 1 час.

Основные понятия Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если система S с течением времени t изменяет свои состояния S(t) случайным образом, то говорят, что в системе S протекает случайный процесс. В любой момент времени система пребывает только в одном из состояний, то есть для любого момента времени t найдется единственное состояние Si такое, что S(t) = Si. Множество состояний может быть дискретно (техническое состояние объекта: исправен - неисправен, загружен - находится в простое; численность персонала; количество объектов, ожидающих обслуживания в очереди) или непрерывно (доход, объем производства).

Основные понятия В случае дискретного множества состояний система меняет свои состояния скачком (мгновенно). В случае же непрерывного множества состояний переход системы происходит непрерывно (плавно). В зависимости от времени пребывания системы в каждом состоянии различают процессы с дискретным временем (искусственная числовая сетка времени) и с непрерывным временем (физическое время, переход системы из одного состояния в другое может осуществляться в любой момент времени). Случайный процесс, протекающий в системе S, называется Марковским, если он обладает свойством отсутствия последствия, состоящим в том, что для каждого момента времени t 0 вероятность любого состояния S(t) системы S в будущем (при t>t 0) зависит только от ее состояния S(t 0) в настоящем (при t=t 0) и не зависит от того, как и сколько времени развивался этот процесс в прошлом (при t>t 0).

А. А. Марков (1856 - 1922) Андрей Андреевич Марков - старший - выдающийся русский математик, разработавший основы теории случайных процессов без последействия, которые в математике называют Марковскими процессами в его честь. А. А. Марков - старший известен также как давший вероятностное обоснование метода наименьших квадратов (МНК), приведший одно из доказательств предельной теоремы теории вероятностей и многое другое.

Виды Марковских процессов Дискретные состояния и дискретное время (цепь Маркова) Непрерывные состояния и дискретное время (Марковские последовательности) Дискретные состояния и непрерывное время (непрерывная Марковская цепь) Непрерывные состояния и непрерывное время. На практике большинство задач по Марковским процессам описываются с помощью Марковских цепей с дискретным или непрерывным временем.

Марковские цепи Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний.

Задание Марковской цепи множеством состояний S = {s 1, …, sn}, событием является переход из одного состояния в другое в результате случайного испытания вектором начальных вероятностей (начальным распределением) p(0) = {p(0)(1), …, p(0)(n)}, определяющим вероятности p(0)(i) того, что в начальный момент времени t = 0 процесс находился в состоянии si матрицей переходных вероятностей P = {pij}, характеризующей вероятность перехода процесса с текущим состоянием si в следующее состояние sj, при этом сумма вероятностей переходов из одного состояния равна 1

Виды Марковских цепей Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага k к шагу (k+1) не меняются. Разложимые Марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. Эргодические Марковские цепи описываются сильно связанным графом. В такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.

Цель моделирования - определить вероятность системы находится в j-ом состоянии после k-го шага. Обозначим эту вероятность - однородная Марковская цепь - неоднородная Марковская цепь

Задача № 1 Некоторая совокупность рабочих семей поделена на три группы: 1 – семьи, не имеющие автомашины и не намеревающиеся ее приобрести; 2 – семьи, не имеющие автомашины, но собирающиеся ее приобрести, и, наконец, 3 – семьи, имеющие автомашину. Статистические обследования дали возможность оценить вероятность перехода семей из одной группы на протяжении года в другую. При этом матрица перехода оказалась такой:

Задача № 1 Найти: а)вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года; б) вероятность того, что семья, не имевшая автомашины и намеревающаяся ее приобрести, будет иметь автомашину через 2 года. (выполнить решение пункта (б) данной задачи самостоятельно)

Решение задачи № 1 а) Дано: т. е. вектор начальных вероятностей p(0)=(1, 0, 0) (сейчас система в состоянии 1) Найти: (через 2 года в состоянии 1) Найдем вероятности системы оказаться в каждом из состояний через 1 год (умножение вектора начальных вероятностей на 1 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 2 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 3 столбец матрицы переходных вероятностей)

Решение задачи № 1 Получим вектор вероятностей через 1 год В нашем случае это 1 -ая строка матрицы переходных вероятностей Найдем вероятности системы оказаться в 1 состоянии через 2 года (умножение вектора вероятностей через 1 год, т. е. 1 -ой строки матрицы переходных вероятностей на 1 -ый столбец матрицы переходных вероятностей)

Решение задачи № 1 Вычисления: Ответ: вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года равна 0, 64

Задача № 2 Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее: после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях – в В и в 40 случаях – в С; после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях – в В и в 20 случаях – в С; после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях – в В и в 20 случаях – в С. Таким образом, район следующей доставки определяется только предыдущей доставкой.

Задача № 2 Если курьер стартует из центрального округа, какова вероятность того, что осуществив две доставки, он будет в южном округе? Выполните решение задачи самостоятельно: Составьте матрицу переходных вероятностей Нарисуйте граф данного процесса Вычислите искомую вероятность

Предельные вероятности Для эргодических цепей при достаточно большом времени функционирования (t стремится к бесконечности) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени. Такие вероятности называются предельными (или финальными, стационарными) вероятностями состояний, они показывает среднее относительное время пребывания системы в определенном состоянии. Например, если предельная вероятность i-го состояния pi=0. 5, то это означает, что в среднем половину времени система находится в i-ом состоянии.

Предельные вероятности Пусть xi – предельные вероятности (i=1. . n), где n – число состояний. Тогда xi являются единственным решением системы линейных уравнений. В данную систему входят уравнения:

Пример Матрица переходных вероятностей (число состояний n=2) и графическое изображение Марковского процесса: Предельные вероятности x 1 и x 2 можно найти, решив систему

Задача № 3 Две машины А и В сдаются в аренду по одной и той же цене. Эти машины имеют следующие матрицы переходных вероятностей: где 1 – состояние, когда машина работает хорошо; 2 – состояние, когда машина требует регулировки. Определить вероятности для обеих машин. Какую машину стоит арендовать?

Задача № 4 Посетитель банка с намерением получить кредит проходит ряд проверок (состояний): е 1 – оформление документов; е 2 – кредитная история; е 3 – возвратность; е 4 – платежеспособность. По результатам проверки возможны два исхода: отказ в выдаче кредита (е 6) и получение кредита (е 5).

Задача № 4 Требуется: a) описать данный процесс как Марковскую цепь и построить переходную матрицу (выполнить самостоятельно); б) найти среднее время получения положительного и отрицательного результата (решение в Excel).

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.
Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.
Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.
Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются: среднее (здесь и в дальнейшем средние величины понимаются как математические ожидания соответствующих случайных величин) число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на два основных типа (класса) : СМО с отказами и href="cmo_length.php">СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.
СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.
Процесс работы СМО представляет собой случайный процесс.
Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.
Процесс называется процессом с дискретными состояниями, если его возможные состояния S 1 , S 2 , S 3 … можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.
Процесс работы СМО представляет собой случайный процесс c дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).
Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пример марковского процесса: система S - счетчик в такси. Состояние системы в момент t характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в момент t > t 0 счетчик покажет то или иное число километров (точнее, соответствующее число рублей) S 1 , зависит от S 0 , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента t 0 .
Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система S - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент t 0 . Вероятность того, что в момент t > t 0 материальный перевес будет на стороне одного из противников, зависят в первую очередь от того, в каком состоянии находится система в данный момент t 0 , а не того, когда и в какой последовательности исчезли фигуры с доски до момента t 0 .
В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состоянии. Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.
Задача 1 . Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время.

Решение. Возможные состояния системы: S 0 - оба узла исправны; S 1 - первый узел ремонтируется, второй исправен; S 2 - второй узел ремонтируется, первый исправен; S 3 - оба узла ремонтируются. Граф системы приведен на рис.1.
Рис. 1
Стрелка, направленная, например, из S 0 в S 1 означает переход системы в момент отказа первого узла, из S 1 в S 0 - переход в момент окончанияремонта этого узла.
На графе отсутствуют стрелки из S 0 , в S 3 и из S 1 в S 2 . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S 0 в S 3) или одновременного окончания ремонтов двух узлов (переход из S 3 в S 0) можно пренебречь.

Поток событий

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.
Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).
Поток характеризуется интенсивностью l - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.
Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: l(t)= l. Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.
Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).
Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени Dt двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поемов, подходящих к станции, ординарен, а поток вагонов не ординарен.
Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.
Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа n независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям l 1 (i=1,2, ..., п) получается поток, близкий к простейшему с интенсивностью l, равной сумме интенсивностей входящих потоков, т.е.
Рассмотрим на оси времени Ot (рис. 2) простейший поток событий как неограниченную последовательность случайных точек.
Рис. 2
Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени t, распределено по закону Пуассона , (1)
для которого математическое ожидание случайной величины равно ее дисперсии: a= s 2 = l t.
В частности, вероятность того, что за время t не произойдет ни одного события (m=0), равна (2)
Найдем распределение интервала времени Т между произвольными двумя соседними событиями простейшего потока.
В соответствии с (15.2) вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна (3)
а вероятность противоположного события, т.е. функция распределения случайной величины Т, есть (4)
Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е. (5)
Рис. 3
Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины (6)
и обратно по величине интенсивности потока l.
Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время t, то это никак не влияет на закон распределения оставшейся части промежутка (T-t): он будет таким же, как и закон распределения всего промежутка Т.
Другими словами, для интервала времени Т между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.
Для простейшего потока с интенсивностью l вероятность попадания на элементарный (малый) отрезок времени Dt хотя бы одного события потока равна согласно (4)
(7)
(Заметим, что эта приближенная формула, получаемая заменой функции e - l Dt лишь двумя первыми членами ее разложения в ряд по степеням Dt, тем точнее, чем меньше Dt).

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.