Меню Рубрики

Процедуры разведочного анализа данных ящичные диаграммы. Методы графического разведочного анализа данных

Data Mining Фролов Тимофей. БИ-1102 Добыча данных это процесс аналитического исследования больших массивов информации (обычно экономического характера) с целью выявления определенных закономерностей и систематических взаимосвязей между переменными, которые затем можно применить к новым совокупностям данных. Этот процесс включает три основных этапа: исследование, построение модели или структуры и ее проверку. В идеальном случае, при достаточном количестве данных можно организовать итеративную процедуру для построения устойчивой модели. В то же время, в реальной ситуации практически невозможно проверить экономическую модель на стадии анализа и поэтому начальные результаты имеют характер эвристик, которые можно использовать в процессе принятия решения (например, "Имеющиеся данные свиделельствуют о том, что у женщин частота приема снотворных средств увеличивается с возрастом быстрее, чем у мужчин."). Методы Data Mining приобретают все большую популярность в качестве инструмента для анализа экономической информации, особенно в тех случаях, когда предполагается, что из имеющихся данных можно будет извлечь знания для принятия решений в условиях неопределенности. Хотя в последнее время возрос интерес к разработке новых методов анализа данных, специально предназначенных для сферы бизнеса (например, Деревья классификации), в целом системы Data Mining по-прежнему основываются на классических принципах разведочного анализа данных(РАД) и построения моделей и используют те же подходы и методы. Имеется, однако, важное отличие процедуры Data Mining от классического разведочного анализа данных (РАД) : системы Data Mining в большей степени ориентированы на практическое приложение полученных результатов, чем на выяснение природы явления. Иными словами, при Data Mining нас не очень интересует конкретный вид зависимостей между переменными задачи. Выяснение природы участвующих здесь функций или конкретной формы интерактивных многомерных зависимостей между переменными не является главной целью этой процедуры. Основное внимание уделяется поиску решений, на основе которых можно было бы строить достоверные прогнозы. Таким образом, в области Data Mining принят такой подход к анализу данных и извлечению знаний, который иногда характеризуют словами "черный ящик". При этом используются не только классические приемы разведочного анализа данных, но и такие методы, как нейронные сети, которые позволяют строить достоверные прогнозы, не уточняя конкретный вид тех зависимостей, на которых такой прогноз основан. Очень часто Data Mining трактуется как "смесь статистики, методов искуственного интеллекта (ИИ) и анализа баз данных" (Pregibon, 1997, p. 8), и до последнего времени она не признавалась полноценной областью интереса для специалистов по статистике, а порой ее даже называли "задворками статистики" (Pregibon, 1997, p. 8). Однако, благодаря своей большой практической значимости, эта проблематика ныне интенсивно разрабатывается и привлекает большой интерес (в том числе и в ее статистических аспектах), и в ней достигнуты важные теоретические результаты (см. например, материалы ежегодно проводимой Международной конференции по поиску знаний и Data Mining (International Conferences on Knowledge Discovery and Data Mining), одним из организаторов которой в 1997 году стала Американская статистическая ассоциация - American Statistical Association). хранилище данных это место хранения больших многомерных массивов данных, которое позволяет легко извлекать и использовать информацию в процедурах анализа. Эффективная архитектура хранилища данных должна быть организована таким образом, чтобы быть составной частью информационной системы управления предприятием (или по крайней мере иметь связь со всеми доступными данными). При этом необходимо использовать специальные технологии работы с корпоративными базами данных (например, Oracle, Sybase, MS SQL Server). Высокопроизводительная технология хранилищ данных, позволяющая пользователям организовать и эффективно использовать базу данных предприятия практически неограниченной сложности, разработана компанией StatSoft enterprise systems и называется SENS и SEWSS ). Термин OLAP (или FASMI - быстрый анализ распределенной многомерной информации) обозначает методы, которые дают возможность пользователям многомерных баз данных в реальном времени генерировать описательные и сравнительные сводки ("views") данных и получать ответы на различные другие аналитические запросы. Обратите внимание, что несмотря на свое название, этот метод не подразумевает интерактивную обработку данных (в режиме реального времени); он означает процесс анализа многомерных баз данных (которые, в частности, могут содержать и динамически обновляемую информацию) путем составления эффективных "многомерных" запросов к данным различных типов. Средства OLAP могут быть встроены в корпоративные (масштаба предприятия) системы баз данных и позволяют аналитикам и менеджерам следить за ходом и результативностью своего бизнеса или рынка в целом (например, за различными сторонами производственного процесса или количеством и категориями совершенных сделок по разным регионам). Анализ, проводимый методами OLAP может быть как простым (например, таблицы частот, описательные статистики, простые таблицы), так и достаточно сложным (например, он может включать сезонные поправки, удаление выбросов и другие способы очистки данных). Хотя методы Data Mining можно применять к любой, предварительно не обработанной и даже неструктурированной информации, их можно также использовать для анализа данных и отчетов, полученных средствами OLAP, с целью более углубленного исследования, как правило, в более высоких размерностях. В этом смысле методы Data Mining можно рассматривать как альтернативный аналитический подход (служащий иным целям, нежели OLAP) или как аналитическое расширение систем OLAP. РАД и проверка гипотез В отличие от традиционной проверки гипотез, предназначенной для проверки априорных предположений, касающихся связей между переменными (например, "Имеется положительная корреляция между возрастом человека и его/ее нежеланием рисковать"), разведочный анализ данных (РАД) применяется для нахождения связей между переменными в ситуациях, когда отсутствуют (или недостаточны) априорные представления о природе этих связей. Как правило, при разведочном анализе учитывается и сравнивается большое число переменных, а для поиска закономерностей используются самые разные методы. Вычислительные методы РАД Вычислительные методы разведочного анализа данных включают основные статистические методы, а также более сложные, специально разработанные методы многомерного анализа, предназначенные для отыскания закономерностей в многомерных данных. Основные методы разведочного статистического анализа. К основным методам разведочного статистического анализа относится процедура анализа распределений переменных (например, чтобы выявить переменные с несимметричным или негауссовым распределением, в том числе и бимодальные), просмотр корреляционных матриц с целью поиска коэффициентов, превосходящих по величине определенные пороговые значения (см. предыдущий пример), или анализ многовходовых таблиц частот (например, "послойный" последовательный просмотр комбинаций уровней управляющих переменных). Методы многомерного разведочного анализа. Методы многомерного разведочного анализа специально разработаны для поиска закономерностей в многомерных данных (или последовательностях одномерных данных). К ним относятся: кластерный анализ, факторный анализ, анализ лискриминантных функций, многомерное шкалирование, логлинейный анализ,канонические корреляции, пошаговая линейная и нелинейная (например, логит) регрессия, анализ соответствий, анализ временных рядов. Нейронные сети. Этот класс аналитических методов основан на идее воспроизведения процессов обучения мыслящих существ (как они представляются исследователям) и функций нервных клеток. Нейронные сети могут прогнозировать будущие значения переменных по уже имеющимся значениям этих же или других переменных, предварительно осуществив процесс так называемого обучения на основе имеющихся данных. Предварительное исследование данных может служить лишь первым этапом в процессе их анализа, и пока результаты не подтверждены (методами кросс-проверки) на других фрагментах базы данных или на независимом множестве данных, их можно воспринимать самое большее как гипотезу. Если результаты разведочного анализа говорят в пользу некоторой модели, то ее правильность можно затем проверить, применив ее к новым данных и определив степень ее согласованности с данными (проверка "способности к прогнозированию"). Для быстрого выделения различных подмножеств данных (например, для очистки, проверки и пр.) и оценки надежности результатов удобно пользоваться условиями выбора наблюдений.

В книге, написанной в 1977 г. известным американским специалистом по математической статистике, изложены основы разведочного анализа данных, т.е. первичной обработки результатов наблюдений, осуществляемой посредством простейших средств - карандаша, бумаги и логарифмической линейки. На многочисленных примерах автор показывает, как представление наблюдений в наглядной форме с помощью схем, таблиц и графиков облегчает выявление закономерностей и подбор способов более глубокой статистической обработки. Изложение сопровождается многочисленными упражнениями с привлечением богатого материала из практики. Живой, образный язык облегчает понимание излагаемого материала.

Джон Тьюки. Анализ результатов наблюдений. Разведочный анализ. – М.: Мир, 1981. – 696 с.

Скачать конспект (краткое содержание) в формате или , примеры в формате

На момент публикации заметки книгу можно найти только в букинистических магазинах.

Автор подразделяет статистический анализ на два этапа: разведочный и подтверждающий. Первый этап включает преобразование данных наблюдений и способы их наглядного представления, позволяющие выявить внутренние закономерности, проявляющиеся в данных. На втором этапе применяются традиционные статистические методы оценки параметров и проверки гипотез. Настоящая книга посвящена разведочному анализу данных (о подтверждающем анализе см. ). Для чтения книги не требуется предварительных знаний по теории вероятностей и математической статистике.

Прим. Багузина. Учитывая год написания книги, автор сосредотачивается на наглядном представлении данных с помощью карандаша, линейки и бумаги (иногда миллиметровой). На мой взгляд, сегодня наглядное представление данных связано с ПК. Поэтому я попытался совместить оригинальные идеи автора и обработку в Excel. Мои комментарии набраны с отступом.

Глава 1. КАК ЗАПИСЫВАТЬ ЧИСЛА («СТЕБЕЛЬ С ЛИСТЬЯМИ»)

График имеет наибольшую ценность тогда, когда он вынуждает нас заметить то, что мы совсем не ожидали увидеть. Представление чисел в виде стебля и листьев позволяет выявить закономерности. Например, приняв основанием стебля десятки, число 35 можно отнести к стеблю 3. Лист будет равен 5. Для числа 108 стебель – 10, лист – 8.

В качестве примера я взял 100 случайных чисел, распределенных по нормальному закону со средним 10 и стандартным отклонением 3. Чтобы получить такие числа я воспользовался формулой =НОРМ.ОБР(СЛЧИС();10;3) (рис. 1). Откройте приложенный файл Excel. Нажимая F9, вы будете генерировать новый ряд случайных чисел.

Рис. 1. 100 случайных чисел

Видно, что числа в основном распределены в диапазоне от 5 до 16. Однако заметить какую-либо интересную закономерность сложно. График «стебель и листья» (рис. 2) выявляет нормальное распределение. В качестве ствола были взяты пары соседних чисел, например, 4-5. Листья отражают число значений в этом диапазоне. В нашем примере таких значений 3.

Рис. 2. График «стебель и листья»

В Excel есть две возможности, позволяющие быстро изучить частотные закономерности: функция ЧАСТОТА (рис. 3; подробнее см. ) и сводные таблицы (рис. 4; подробнее см. , раздел Группировка числовых полей ).

Рис. 3. Анализ с помощью функции массива ЧАСТОТА

Рис. 4. Анализ с помощью сводных таблиц

Представление в виде стебля с листьями (частотное представление) позволяет выявить следующие особенности данных:

  • разделение на группы;
  • несимметричное спадание к концам - один «хвост» длиннее другого;
  • неожиданно «популярные» и «непопулярные» значения;
  • относительно какого значения «центрированы» наблюдения;
  • как велик разброс данных.

Глава 2. ПРОСТЫЕ СВОДКИ ДАННЫХ – ЧИСЛОВЫЕ И ГРАФИЧЕСКИЕ

Представление чисел в виде стебля с листьями позволяет воспринять общую картину выборки. Перед нами стоит задача научиться выражать в сжатом виде наиболее часто встречающиеся общие особенности выборок. Для этого используются сводки данных. Однако, несмотря на то, что сводки могут быть очень полезными, но они не дают всех подробностей выборки. Если этих подробностей не так много, чтобы в них запутаться, лучше всего иметь перед глазами полные данные, размещенные отчетливо удобным для нас способом. Для больших массивов данных сводки необходимы. Мы не предполагаем и не ожидаем, что они заменят полные данные. Разумеется, нередко бывает, что добавление подробностей мало что дает, но важно осознать, что иногда подробности дают многое.

Если для характеристики выборки как целого нам нужно выбрать несколько чисел, которые легко найти, то нам наверняка понадобятся:

  • крайние значения - наибольшее и наименьшее, которые мы пометим символом «1» (в соответствии с их рангом или глубиной);
  • какое-то срединное значение.

Медиана = срединное значение.

Для ряда, представленного в виде стебля с листьями, срединное значение легко найти подсчетом вглубь от любого из концов, приписывая крайнему значению ранг «1». Таким образом, каждое значение в выборке получает свой ранг . Счет можно начинать с любого конца. Наименьший из двух получаемых таким образом рангов, которые можно приписать одному и тому же значению, мы назовем глубиной (рис. 5). Глубина крайнего значения всегда 1.

Рис. 5. Определение глубины на основе двух направлений ранжирования

глубина (или ранг) медианы = (1 + число значений)/2

Если мы хотим добавить еще два числа, чтобы образовать 5-числовую сводку, то естественно определять их подсчетом до половины расстояния от каждого из концов к медиане. Процесс нахождения медианы, а затем и этих новых значений можно представить себе, как складывание листа бумаги. Поэтому эти новые значения естественно назвать сгибами (сейчас чаще используется термин квартиль ).

В свернутом виде ряд из 13 значений может выглядеть, например, так:

Пять чисел для характеристики ряда в порядке возрастания будут: –3,2; 0,1; 1,5; 3,0; 9,8 - по одному в каждой точке перегиба ряда. Пять чисел (крайние значения, сгибы, медиана), из которых состоит 5-числовая сводка, мы будем изображать в виде следующей простой схемы:

где слева мы показали количество чисел (отмечено знаком #), глубину медианы (буквой М), глубину сгибов (буквой С) и глубину крайних значений (всегда 1, больше ничем отмечать не надо).

На рис. 8 показано, как изобразить 5-числовую сводку графически. Такого типа график называется «ящик с усами».

Рис. 8. Схематическая диаграмма или ящик с усами

К сожалению, Excel стандартно строит биржевые диаграммы, основанные только на трех или четырех значениях (рис. 9; как обойти это ограничение см. ). Для построения 5-числовой сводки можно воспользоваться статистическим пакетом R (рис. 10; подробнее см. Базовые графические возможности R: диаграммы размахов ; если вы не знакомы с пакетом R, можно начать с ). Функция boxplot() в R помимо 5 чисел отражает также выбросы (о них чуть позже).

Рис. 9. Возможные типы биржевых диаграмм в Excel

Рис. 10. Ящичная диаграмма в R; для построения такого графика достаточно выполнить команду boxplot(count ~ spray, data = InsectSprays), будут загружены данные, хранящиеся в программе, и построен представленный график

При построении диаграммы «ящик с усами» мы будем придерживаться следующей простой схемы:

  • «С-ширина» = разность между значениями двух сгибов;
  • «шаг» - величина, в полтора раза большая, чем С-ширина;
  • «внутренние барьеры» находятся снаружи сгибов на расстоянии одного шага;
  • «наружные барьеры» - снаружи на один шаг дальше внутренних;
  • значения между внутренним и соседним наружным барьерами будут «внешними»;
  • значения за наружными барьерами будем называть «отскакивающими» (или выбросы);
  • «размах» = разность между крайними значениями.

Рис. 19. Вычисление скользящей медианы: (а) подробно для части данных; (б) для всей выборки

Рис. 20. Сглаженная кривая

Глава 10. ИСПОЛЬЗОВАНИЕ ДВУХФАКТОРНОГО АНАЛИЗА

Наступило время рассмотреть двухфакторный анализ - как вследствие его важности, так и потому, что он является введением в разнообразные методы исследования. В основе двухфакторной таблицы (таблицы «откликов») лежат:

  • один вид откликов;
  • два фактора - и каждый из них проявляется в каждом наблюдении.

Двухфакторная таблица остатков. Анализ «строка-плюс-столбец». На рис. 21 приведены среднемесячные значения температуры для трех мест в Аризоне.

Рис. 21. Среднемесячные температуры в трех городах Аризоны, °F

Определим медиану по каждому месту, и вычтем ее из отдельных значений (рис. 22).

Рис. 22. Значения аппроксимации (медианы) для каждого города и остатки

Теперь определим аппроксимацию (медиану) по каждой строке, и вычтем ее из значений строки (рис. 23).

Рис. 23. Значения аппроксимации (медианы) для каждого месяца и остатки

Для рис. 23 мы вводим понятие «эффект». Число –24,7 представляет собой эффект столбца, а число 19,1 - эффект строки. Эффект показывает, как проявляется фактор или множество факторов в каждой из наблюденных величин. Если проявляющаяся часть фактора больше, чем то, что остается, то легче разглядеть и понять, что происходит с данными. Число, которое было вычтено из всех без исключения данных (здесь 70,8), называем «общее». Оно есть проявление всех факторов, общих для всех данных. Таким образом, для величин на рис. 23 справедлива формула:

Это и есть схема конкретного анализа «строка-ПЛЮС-столбец». Мы возвращаемся к нашей старой уловке - попытаться найти простое частичное описание - частичное описание, которое легче воспринимается - частичное описание, вычитание которого даст нам возможность глубже взглянуть на то, что еще не было описано.

Что нового мы сможем узнать благодаря полному двухфакторному анализу? Самый большой остаток, равный 1,9, мал по сравнению с величиной изменения эффекта от пункта к пункту и от месяца к месяцу. Во Флагстаффе приблизительно на 25°F прохладнее, чем в Финиксе, в то время как в Юме на 5–6°F теплее, чем в Финиксе. Последовательность эффектов месяцев монотонно убывает от месяца к месяцу, сначала медленно, затем быстро, затем снова медленно. Это похоже на симметрию относительно октября (такую закономерность я ранее наблюдал на примере продолжительности дня; см. . – Прим. Багузина ); Мы сняли обе завесы - эффект сезона и эффект места. После этого мы смогли увидеть довольно многое из того, что ранее оставалось незамеченным.

На рис. 24 приведена двухфакторная диаграмма . Хотя основное на этом рисунке - это аппроксимация, мы не должны пренебрегать остатками. В четырех точках мы нарисовали короткие вертикальные черточки. Длины этих черточек равны величинам соответствующих остатков, так что координаты вторых концов представляют не значения аппроксимации, а

Данные = аппроксимация ПЛЮС остаток.

Рис. 24. Двухфакторная диаграмма

Заметим также, что свойство этой или любой другой двухфакторной диаграммы - «шкала лишь в одном направлении», задающими вертикальный размер, т.е. пунктирными горизонтальными линиями, проведенными по бокам картинки, и отсутствием какого-либо размера в горизонтальном направлении.

О возможностях Excel см. . Любопытно, что некоторые формулы, использованные в этой заметке, носят имя Тьюки

Дальнейшее изложение, на мой взгляд, стало совсем сложным…

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

STATISTICA предлагает широкий выбор методов разведочного статистического анализа. Система может вычислить практически все описательные статистики, включая медиану, моду, квартили, определенные пользователем процентили, средние и стандартные отклонения, доверительные интервалы для среднего, коэффициенты асимметрии, эксцесса (с их стандартными ошибками), гармоническое и геометрическое среднее, а также многие другие описательные статистики. Возможен выбор критериев для тестирования нормальности распределения (критерий Колмогорова-Смирнова, Лилиефорса, Шапиро-Уилкса). Широкий выбор графиков помогает проведению разведочного анализа.

2. Корреляции.

Этот раздел включает большое количество средств, позволяющих исследовать зависимости между переменными. Возможно вычисление практически всех общих мер зависимости, включая коэффициент корреляции Пирсона, коэффициент ранговой корреляции Спирмена, Тау (Ь,с) Кендалла, Гамма, коэффициент сопряженности признаков С и многие другие..

Корреляционные матрицы могут быть вычислены и для данных с пропусками, используя специальные методы обработки пропущенных значений.

Специальные графические возможности позволяют выбрать отдельные точки на диаграмме рассеяния и оценить их вклад в регрессионную кривую или любую другую кривую, подогнанную к данным.

3. t - критерии (и другие критерии для групповых различий).

Процедуры позволяют вычислить t-критерии для зависимых и независимых выборок, а также статистика Хоттелинга (см. также ANOVA/MANOVA).

4. Таблицы частот и таблицы кросстабуляций.

В модуле содержится обширный набор процедур, обеспечивающих табулирование непрерывных, категориальных, дихотомических переменных, переменных, полученных в результате многовариативных опросов. Вычисляются как кумулятивные, так и относительные частоты. Доступны тесты для кросстабулированных частот. Вычисляются статистики Пирсона, максимального правдоподобия, Иегс-коррекция, хи-квадрат, статистики Фишера, Макнемера и многие другие.

Модуль «Множественная регрессия»

Модуль «Множественная регрессия» включает в себя исчерпывающий набор средств множественной линейной и фиксированной нелинейной (в частности, полиномиальной, экспоненциальной, логарифмической и др.) регрессии, включая пошаговые, иерархические и другие методы, а также ридж-регрессию.

Система STATISTICA позволяет вычислить всесторонний набор статистик и расширенной диагностики, включая полную регрессионную таблицу, частные и частичные корреляции и ковариации для регрессионных весов, матрицы прогонки, статистику Дарбина-Ватсона, расстояния Махаланобиса и Кука, удаленные остатки и многие другие. Анализ остатков и выбросов может быть проведен при помощи широкого набора графиков, включая разнообразные точечные графики, графики частичных корреляций и многие другие. Система прогноза позволяет пользователю выполнять анализ "что - если". Допускаются чрезвычайно большие регрессионные задачи (до 300 переменных в процедуре разведочной регрессии). STATISTICA также содержит «Модуль нелинейного оценивания», с помощью которого могут быть оценены практически любые определенные пользователем нелинейные модели, включая логит, пробит регрессию и др.

Модуль «Дисперсионный анализ». Общий ANOVA/MANOVA модуль

ANOVA/MANOVA модуль представляет собой набор процедур общего одномерного и многомерного дисперсионного и ковариационного анализа.

В модуле представлен самый широкий выбор статистических процедур для проверки основных предположений дисперсионного анализа, в частности, критерии Бартлетта, Кохрана, Хартли, Бокса и других.

Модуль «Дискриминантный анализ»

Методы дискриминантного анализа позволяют построить на основе ряда предположений классификационное правило отнесения объекта к одному из нескольких классов, минимизируя некоторый разумный критерий, например, вероятность ложной классификации или заданную пользователем функцию потерь. Выбор критерия определяется пользователем из соображений ущерба, который он понесет из-за ошибок классификации.

Модуль дискриминантного анализа системы STATISTICA содержит полный набор процедур для множественного пошагового функционального дискриминантного анализа. STATISTICA позволяет выполнять пошаговый анализ, как вперед, так и назад, а также внутри определенного пользователем блока переменных в модели.

Модуль «Непараметрическая статистика и подгонка распределений»

Модуль содержит обширный набор непараметрических критериев согласия, в частности, критерий Колмогорова-Смирнова, ранговые критерии Манна-Уитни, Валь-да-Вольфовица, Вилкоксона и многие другие.

Все реализованные ранговые критерии доступны в случае совпадающих рангов и используют поправки для малых выборок.

Статистические процедуры модуля позволяют пользователю легко сравнить распределение наблюдаемых величин с большим количеством различных теоретических распределений. Вы можете подогнать к данным нормальное, равномерное, линейное, экспоненциальное, Гамма, логнормальное, хи-квадрат, Вейбулла, Гомпертца, биномиальное, Пуассоновское, геометрическое распределения, распределение Бернулли. Точность подгонки оценивается с помощью критерия хи-квадрат или одновыборочного критерия Колмогорова-Смирнова (параметры подгонки могут контролироваться); также поддерживаются тесты Лиллифорса и Шапиро-Уилкса.

Модуль «Факторный анализ»

Модуль факторного анализа содержит широкий набор методов и опций, снабжающих пользователя исчерпывающими средствами факторного анализа.

Он, в частности, включает в себя метод главных компонент, метод минимальных остатков, метод максимального правдоподобия и др. с расширенной диагностикой и чрезвычайно широким набором аналитических и разведочных графиков. Модуль может выполнять вычисление главных компонент общего и иерархического факторного анализа с массивом, содержащим до 300 переменных. Пространство общих факторов может быть выведено на график и просмотрено либо "ломтик за ломтиком", либо на 2- или 3-мерных диаграммах рассеяния с помеченными переменными-точками.

После того как решение определено, пользователь может пересчитать корреляционную матрицу от соответствующего числа факторов для того, чтобы оценить качество построенной модели.

Кроме того, STATISTICA содержит модуль «Многомерное шкалирование», модуль «Анализ надежности», модуль «Кластерный анализ», модуль «Лог-линейный анализ», модуль «Нелинейное оценивание», модуль «Каноническая корреляция», модуль «Анализ длительностей жизни», модуль «Анализ временных рядов и прогнозирование» и другие.

Численные результаты статистического анализа в системе STATISTICA выводятся в виде специальных электронных таблиц, которые называются таблицами вывода результатов - ScroHsheets ™. Таблицы Scrollsheet могут содержать любую информацию (как численную, так и текстовую), от короткой строчки до мегабайтов результатов. В системе STATISTICA эта информация выводится в виде последовательности (очереди), которая состоит из набора таблиц Scrollsheet и графиков.

STATISTICA содержит большое количество инструментов для удобного просмотра результатов статистического анализа и их визуализации. Они включают в себя стандартные операции по редактированию таблицы (включая операции над блоками значений, Drag-and-Drop - "Перетащить и опустить", автозаполнение блоков и др.), операции удобного просмотра (подвижные границы столбцов, разделение прокрутки в таблице и др.), доступ к основным статистикам и графическим возможностям системы STATISTICA. При выводе целого ряда результатов (например, корреляционной матрицы) STATISTICA отмечает значимые коэффициенты корреляции цветом. Пользователь так же имеет возможность выделить при помощи цвета необходимые значения в таблице Scrollsheet.

Если пользователю необходимо провести детальный статистический анализ промежуточных результатов, то можно сохранить таблицу Scrollsheet в формате файла данных STATISTICA и далее работать с ним, как с обычными данными.

Кроме вывода результатов анализа в виде отдельных окон с графиками и таблицами Scrollsheet на рабочем пространстве системы STATISTICA, в системе имеется возможность создания отчета, в окно которого может быть выведена вся эта информация. Отчет - это документ (в формате RTF), который может содержать любую текстовую или графическую информацию. В STATISTICA имеется возможность автоматического создания отчета, так называемого автоотчета. При этом любая таблица Scrollsheet или график могут автоматически быть направлены в отчет.

Разведочный анализ данных (РАД; Exploratory data analysis) употребляется, когда, с одной стороны, у исследователя имеется таблица многомерных данных, а с другой стороны, априорная информация о физическом (причинном) механизме генерации этих данных отсутствует или неполна. В этой ситуации РАД может оказать помощь в компактном и понятном исследователю описании структуры данных (например, в форме визуального представления этой структуры), отталкиваясь от которого он уже может «прицельно» поставить вопрос о более детальном исследовании данных с помощью того или иного раздела статистического анализа, обоснования полученной структуры данных с помощью аппарата проверки статистических гипотез, а также, возможно, сделать некоторые заключения и о причинной модели данных. Этот этап называется «подтверждающим анализом данных» (confirmatory data analysis). Иногда выявление структуры данных с помощью РАД может оказаться и завершающим этапом анализа. С другой стороны, ряд методов РАД можно рассматривать и как методы подготовки данных для последующей статистической обработки без какого-либо изучения структуры данных, которое предполагается осуществить на последующих этапах.

В этом случае этап РАД играет роль некоторого этапа перекодировки и преобразования данных (путем, например, сокращения размерности) в удобную для последующего анализа форму. В любом случае, с какой бы целью ни применялись методы РАД, основная задача - переход к компактному описанию данных при возможно более полном сохранении существенных аспектов информации, содержащихся в исходных данных. Важно также, чтобы описание было понятным для пользователя. Впервые термин «разведочный анализ данных» был введен Дж. Тьюки в 1962 г.

Модели структуры многомерных данных. Пусть данные заданы в виде матрицы данных. Объекты можно представить в виде точек в многомерном (р-мерном) пространстве. Для описания структуры этого множества точек в РАД используется одна из следующих статистических моделей:

а) модель облака точек примерно эллипсоидальной конфигурации;

б) кластерная модель, т. е. совокупность нескольких «облаков» точек, достаточно далеко отстоящих друг от друга;

в) модель «засорения» (компактное облако точек и при этом присутствуют далекие выбросы);

г) модель носителя точек как многообразия (линейного или нелинейного) более низкой размерности, чем исходное; типичным примером является выборка из вырожденного распределения;

д) дискриминантная модель, когда точки разделены некоторым образом на несколько групп и дана информация о их принадлежности к той или иной группе.

В рамках модели можно рассматривать и регрессионную модель, когда соответствующее многообразие допускает функциональное представление , где - две группы переменных из исходного набора (переменные из носят тогда название прогнозируемых переменных, а из - предсказывающих переменных); - ошибка предсказания.

Разумеется, реальные данные обычно лишь приближенно могут следовать этим моделям, более того, структура данных может не подходить ни под одну из указанных в описании моделей даже приближенно.

Модели описания структуры зависимостей. В пространстве переменных для описания структуры зависимостей между переменными часто используются следующие модели: модель независимых переменных, модель линейно зависимых переменных, древообразная модель зависимости, факторная модель для линейно зависимых переменных, кластерная модель (произвольные коэффициенты связи), иерархическая модель зависимости.

Основные методические приемы при проведении разведочного анализа данных. Способы анализа и интерпретации результатов в значительной степени зависят от выбранного метода обработки. Однако можно выделить ряд эффективных приемов и подходов к анализу результатов, которые являются наиболее общими и в значительной степени определяют специфику собственно разведочного анализа, отличают его от остальных этапов статистической обработки. Это визуализация данных и манипуляции с данными на основе графического отображения; использование аппарата активных и иллюстративных переменных; преобразование данных, облегчающее выявление структур, анализ остатков.