Меню Рубрики

Системы массового обслуживания. Теория массового обслуживания Электрические сети как система массового обслуживания

4 – Основы теории массового обслуживания.

Определение 1. Пусть имеется некоторая физическая система S , которая с течением времени меняет свое состояние (переходит из одного состояния в другое), причем заранее неизвестным, случайным образом. Тогда мы будем говорить, что в системе S протекает случайный процесс.

Под «физической системой» можно понимать что угодно: техническое устройство, предприятие, живой организм и т.д.

Пример. S техническое устройство, состоящее из ряда узлов, которые время от времени выходят из строя, заменяются или восстанавливаются. Процесс, протекающий в системе, – случайный. Вообще, если подумать, труднее привести пример «неслучайного» процесса, чем случайного. Даже процесс хода часов – классический пример точной, строго выверенной работы («работают как часы») подвержен случайным изменениям (уход вперед, отставание, остановка).

Определение 2. Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы наблюдаем процесс со стороны и в момент t 0 знаем состояние системы S 0 и всю предысторию процесса, все, что было при t < t 0 . Нас, естественно. Интересует будущее: t > t 0 . Можем ли мы его предугадать? В точности – нет. Наш процесс случайный, следовательно – непредсказуемый. Но какие-то вероятностные характеристики процесса в будущем мы найти можем. Например, вероятность того, что через некоторое время t система S окажется в состоянии S 1 или сохранит состояние S 0 и т.д.

Если процесс марковский, то предсказывать можно, только учитывая настоящее состояние системы S 0 и забыв о его «предыстории» (поведение системы при t < t 0 ). Само состояние S 0 , разумеется, зависит от прошлого, но как только оно достигнуто, о прошлом можно забыть. Т.е. в марковском процессе «будущее зависит от прошлого только через настоящее» .

Пример. Система S – счетчик Гейгера, на который время от времени попадают космические частицы; состояние системы в момент времени t характеризуется показаниями счетчика – числом частиц, пришедших до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в в момент t > t 0 счетчик покажет то или другое число частиц S 1 (или менее S 1 ) зависит от S 0 , но не зависит от того, в какие именно моменты приходили частицы до момента t 0 .

На практике часто встречаются процессы, которые если не в точности марковские, то могут быть в каком-то приближении рассмотрены как марковские. Например, S ­ – группа самолетов, участвующих в воздушном бою. Состояние системы характеризуется числом самолетов «красных» – x и «синих» – y , сохранившихся (не сбитых) к какому-то моменту. В момент t 0 нам известны численности сторон x 0 и y 0 . Нас интересует вероятность того, что в какой-то момент времени t 0 + t численный перевес будет на стороне «красных». От чего зависит эта вероятность? В первую очередь от того, в каком состоянии находится система в данный момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента времени t 0 самолеты.

В сущности любой процесс можно рассматривать как марковский, если все параметры из «прошлого», от которых зависит «будущее», перенести в «настоящее». Например, пусть речь идет о работе какого-то технического устройства; в какой-то момент времени t 0 оно ещё исправно, и нас интересует вероятность того, что оно проработает ещё время t . Если за настоящее время считать просто «система исправна», то процесс безусловно не марковский, потому что вероятность, что она не откажет за время t , зависит, в общем случае, от того, сколько времени она уже проработала и когда был последний ремонт. Если оба эти параметра (общее время работы и время после ремонта) включить в настоящее состояние системы. То процесс можно будет считать марковским.

Определение 3. Процесс называется с дискретными состояниями, если его возможные состояния S 1 , S 2 ,... можно заранее перечислить (перенумеровать), и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Определение 4. Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны, если переход может осуществиться, в принципе, в любой момент.

Мы будем рассматривать только процессы с дискретными состояниями.

Пример. Техническое устройство S состоит из двух узлов. Каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

Рис.4.1

Возможные состояния системы:

S 0 – оба узла исправны;

S 1 – первый узел ремонтируется, второй исправен;

S 2 – второй узел ремонтируется, первый исправен;

S 3 – оба узла ремонтируются.

Стрелка, направленная из S 0 в S 1 означает момент отказа первого узла и т. д. На рисунке нет стрелки из состояния S 0 в состояние S 3 , поскольку вероятность того, что два прибора откажут одновременно, стремится к нулю.

Определение 5. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток сбоев на ЭВМ, поток вызовов на телефонной станции).

Важнейшей характеристикой потока событий является его интенсивность l – среднее число событий, приходящееся на единицу времени. интенсивность потока может быть постоянной (l = const ), так и переменной, зависящей от времени. Например, поток автомашин, движущихся по улице, днем интенсивнее, чем ночью, а поток автомашин с 14-ти до 15-ти часов дня можно считать постоянным.

Определение 6. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени.

Определение 7. Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность l стационарного потока должна быть постоянной. Это отнюдь не означает, что фактическое число событий, появляющееся в единицу времени, постоянно, – нет, поток неизбежно (если только он не регулярный) имеет какие-то случайные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера: на один участок длины 1 может попасть больше, а на другой – меньше событий, но среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Например, поток вызовов, поступающих на АТС между 13 и 14 часами. Практически стационарен, но тот же поток в течение суток уже не стационарен.

Определение 8. Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. По сути это означает, что события, образующие поток, появляются в те или другие моменты независимо друг от друга, вызванные каждое своими собственными причинами.

Например, поток пассажиров, входящих в метро, практически не имеет последействия. А вот поток покупателей, отходящих от прилавка с купленными товарами, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Определение 9. Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами сразу.

Например поток клиентов к зубному врачу – обычно ординарный. Поток поездов, подходящих к станции – ординарен, а поток вагонов – неординарен.

Определение 10. Поток событий называется простейшим (или стационарным Пуассоновским), если он обладает сразу тремя свойствами: стационарен, ординарен и не имеет последействия, а сам входной поток распределен по закону Пуассона ().

Для описания случайного процесса, протекающего в системе с дискретными состояниями S 1 , S 2 , ..., S n часто пользуются вероятностями состояний p 1 ( t ),..., p n ( t ) , где p k ( t ) – вероятность того, что в момент времени t система находится в состоянии S k . Вероятности p k ( t ) удовлетворяют условию: .

Если процесс, протекающий в системе с дискретными состояниями и непрерывным временем является марковским, то для вероятностей состояний p 1 ( t ), ..., p n ( t ) можно составить систему линейных дифференциальных уравнений. При составлении этих уравнений удобно пользоваться графом состояний системы, на котором против каждой стрелки, ведущей из состояния в состояние, проставлена интенсивность потока событий, переводящего систему по стрелке (рис.4.2):

Рис.4.2

l ij – интенсивность потока событий, переводящего систему из состояния S i в состояние S j .

Правило создания системы линейных дифференциальный уравнений для нахождения вероятностей состояний.

Для каждого состояния выписывается собственное уравнение. В левой части каждого уравнения стоит производная , а в правой – столько членов, сколько стрелок связано непосредственно с данным состоянием; если стрелка ведет в данное состояние, то член имеет знак «+», иначе - знак «–». Каждый член равен интенсивности потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого стрелка выходит.

Т.о. система линейных дифференциальных уравнений в нашем случае имеет вид:

Начальные условия для интегрирования такой системы отражают состояние системы в начальный момент времени. Если, например, система при t =0 была в состоянии S k , то . Эти уравнения можно решать аналитически, но это удобно только тогда, когда число уравнений не превышает двух (иногда трех). В случае, когда уравнений оказывается больше, применяют численные методы.

Что будет происходить с вероятностями состояний при ? Будут ли p 1 ( t ), ..., p n ( t ) стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний: . p i – среднее относительное время пребывания системы в i -ом состоянии.

Как найти финальные вероятности? Поскольку все p i = const , то производные, стоящие в левой части каждого уравнения равны нулю. Т.о. мы получили систему линейных алгебраических уравнений. Поскольку ни одно уравнение в этой системе не имеет свободного члена, то система является вырожденной (т.е. все переменные будут выражены через одну). Чтобы этот избежать, необходимо воспользоваться нормировочным условием (), при этом любое уравнение можно отбросить.

Классификация систем массового обслуживания

По количеству обслуживающих приборов СМО делятся на одноканальные и многоканальные. Многоканальные СМО состоят из нескольких приборов, и каждый них может обслуживать заявку.

Также СМО подразделяются на системы без ожидания и с ожиданием. В первых заявка покидает очередь, если к моменту её прихода отсутствует хотя бы один канал, способный немедленно приступить к обслуживанию данной заявки. Вторые, в свою очередь, делятся на системы без ограничения и с ограничениями по длине очереди.

Также СМО делятся на системы с приоритетами и без них. В свою очередь системы с приоритетом делятся на СМО с прерыванием и без.

Одноканальная СМО с неограниченной очередью


Рис.4.3

Найдем вероятности p k :

Для состояния S 0 : , отсюда ;

Для состояния S 1 n : , подставляем полученное значение для p 1 : . Аналогично, .

Вероятность p 0 найдем из нормировочного условия :

, – геометрическая прогрессия, при r <1 сходится. – вероятность того, что нет заявок.

– вероятность того, что прибор занят обслуживанием заявки. r = l / m – мера загрузки одноканальной СМО.

В текущий момент времени в системе может быть 0, 1, 2, ..., k , ... заявок с вероятностями p 0 , p 1 p 2 , ... Математическое ожидание количества заявок:

учитывая, что , получим:

Средняя длина очереди равна разности между средним числом заявок в системе и средним числом заявок, находящихся под обслуживанием: .

Формулы Литтла

Рис.4.4

Первая формула Литтла позволяет определить время реакции СМО (время пребывания заявки в системе).

Пусть X ( t ) – число заявок, поступивших в СМО до момента времени t , Y ( t ) – покинувших СМО до t . Обе функции случайны и увеличиваются скачком на единицу в моменты прихода и ухода заявок. Тогда число заявок в системе в момент времени t можно определить как: . Рассмотрим очень большой промежуток времени T и вычислим среднее число заявок в системе:

.

Интеграл равен площади ступенчатой фигуры, ограниченной функциями X ( t ) и Y ( t ) , эта сумма состоит из прямоугольников, ширина которых равна единице, а длина – времени пребывания i -ой заявки в системе. Сумма распространяется на все заявки, поступившие в систему за время T . Правую часть домножим и разделим на l : . T l – среднее количество заявок, пришедших за время T . Поделив сумму всех времен t i на среднее число заявок, получим среднее время пребывания заявки в системе: .

Совершенно аналогично можно получить среднее время пребывания заявки в очереди: .

Многоканальная СМО с неограниченной очередью


Рис.4.5

Найдем вероятности p k :

Для состояния S 0 : ;

Для состояний S 1 S n : ;

Для S n +1 : ; ...

Для S n+s-1 : ;

Для S n+s : .

Из первых n +1 уравнений получаем:

Из последнего уравнения выражаем: и подставляем в предпоследнее: , . Тогда .

Продолжая аналогию: .

Теперь найдем p 0 , подставив полученные выражения в нормировочное условие (): . Отсюда .

Показатели эффективности СМО

– Вероятность потери требования в СМО. Особенно часто ею пользуются при исследовании военных вопросов. Например, при оценке эффективности противовоздушной обороны объекта она характеризует вероятность прорыва воздушных целей к объекту. Применительно к СМО с потерями она равна вероятности занятости обслуживанием требований всех n приборов системы. Чаще всего эту вероятность обозначают p n или p отк .

– Вероятность того, что обслуживанием требований в системе занято k приборов, равна p k .

– Среднее число занятых приборов: характеризует степень загрузки обслуживающей системы.

– Среднее число свободных от обслуживания приборов:.

– Коэффициент простоя приборов: .

– Коэффициент занятости оборудования: .

– Средняя длина очереди: , p k - вероятность того, что в системе находится k требований.

– Среднее число заявок, находящихся в сфере обслуживания: .

– Вероятность того, что число заявок в очереди, ожидающих начала обслуживания, больше некоторого числа m : . Этот показатель особенно необходим при оценке возможностей размещения требований при ограниченности времени для ожидания.

Кроме перечисленных критериев при оценке эффективности СМО могут быть использованы стоимостные показатели:

q об – стоимость обслуживания каждого требования в системе;

q ож – стоимость потерь, связанных с простаиванием заявок в очереди в единицу времени;

q у – убытки, связанные с уходом из системы заявки;

q k – стоимость эксплуатации каждого прибора в единицу времени;

q k пр – стоимость простоя единицы времени k -го прибора системы.

При выборе оптимальных параметров СМО по экономическим показателям можно использовать функцию стоимости потерь в системе (для СМО с ожиданием): T – интервал времени.

Для СМО с отказами: .

Для смешанных: .

Критерий экономической эффективности СМО: , с – экономический эффект, получаемый при обслуживании каждой заявки.

СМО замкнутого типа

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как , – среднее время обслуживания станка, которое вычисляется как , где n – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где – среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO : каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k -1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач,

связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам z 1 , z 2 , ..., z m , ... , таким образом, что:

Случайные величины z k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин z i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины z k , поэтому часто пользуются соответствующей функцией плотности f ( z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины z k независимы. Поэтому . Функции f i ( z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала z k ( i >1) поступила заявка. В отличие от этого функция f 1 ( z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

· Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R ( t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время t p . Величину t p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более t n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

· Структура алгоритма, моделирующего

процесс обслуживания заявок

Рассмотрим однофазную СМО, имеющую n линий, на которые поступают заявки в случайные моменты времени t i . Если вмомент поступления заявки оказываются в наличии свободные линии (их число n св ), заявка занимает одну из них на время t p . В противном случае заявка находится в системе до момента t n , ожидая обслудивания. В т t чение времени ожидания некоторые линии могут освободиться (их число m ), и в этом случае будет возможность обслужить заявку. Если до момента времени t n ни одна из линий не освобождается (m =0 ), заявка получает отказ.

Будем считать, что в силу недостаточно высокой надежности системы, линии обслуживающие заявку, могут выходить из строя, тогда заявка получает отказ, а линия может быть отремонтирована и через промежуток времнеи t pem введена в строй.

Для исследования качества обслуживания заявок предусматривается N * кратное моделирование процесса функционирования системы в интервале (0, T ) . В процессе моделирования число обследованных реализаций обозначим через N .

Алгоритм:

1. Определяется момент t i поступления очередной заявки в систему.

2. Если t i < T , то переход на шаг 3, иначе – на шаг 11.

3. Проверка возможности обслужить поступившую заявку: если n св >0 , то переход на шаг 4, иначе – на шаг 12. (Значение времени поступления заявки t i сравнивается с t осв для всех линий, т.о. выявляются свободные линии.)

4.Если n св >1 , то переход на шаг 5, иначе – на шаг 6.

5. Выбирается номер свободной линии по специальным правилам.

6. Назначается выбранная линия.

7. Проверка: имеет ли место срыв обслуживания по причине недостаточной надежности? Если да, то переход на шаг 8, иначе – на шаг 10.

8. Определение времени t рем ремонта линии, вышедшей из строя (t рем имеет определенный закон распределения).

9. N отк = N отк +1 . Переход на шаг 1.

10. Определение времени занятости t з линии, которая назначена обслуживать заявку (некая случайная величина с определенным законом распределения) и времени освобождения линии: t осв = t i + t з . Переход к очередной заявке (шаг 1).

11. Проверка: если N < N * , то N = N +1 и переход на шаг 1, иначе – обработка результатов опыта и конец.

12. Определить:

А) времени t n пребывания заявки в системе;

Б) число освободившихся каналов m за время t n .

13. Если m >0 , то переход на шаг 14, иначе – на шаг 9.

14. Если m >1 , то переход на шаг 15, иначе – на шаг 6.

15. Выбирается определенная линия в соответствии с принятыми правилами и переход на шаг 6.

Для всех моделей сетей очередей, описанных в главе 2, предполагалось, что длительности обслуживания требований на различных этапах маршрута независимы. Это неадекватно отражает реальную ситуацию в сетях передачи информации, где длина (объем) сообщения в процессе его передачи от одного узла к другому не меняется, что приводит к необходимости исследования сетей с зависимыми (в частности, идентичными) длительностями передачи сообщений на каналах.

В настоящей работе, следуя предполагается, что наряду с длительностью обслуживания каждое сообщение характеризуется также своим объемом, а относительно длительностей обслуживания предполагается лишь их условная (при фиксированном объеме) независимость, что позволяет фактически учитывать зависимость длительностей обслуживания одного и того же сообщения на различных этапах своего маршрута. При этом мы ограничиваемся принципами маршрутизации Келли (сети типа Джексона с марковской маршрутизацией являются частным случаем рассматриваемой модели).

Приводится альтернативное доказательство мультипликативного представления для стационарных вероятностей состояний таких сетей с узлами различных типов, реализующими так называемые симметричные дисциплины обслуживания, и допускающими зависимость обслуживания требований в различных узлах маршрута. При этом не затрагиваются тонкие вопросы существования стационарных распределений для общих сетей, которые представляют собой предмет самостоятельных исследований.

5.2.1 Описание сети. Обозначения

Рассмотрим сеть МО, для описания которой будем использовать следующие обозначения:

М - конечное множество узлов сети,

М - число узлов в сети МО,

Номер узла, .

Узлы предполагаются следующих типов:

0) экспоненциальные многолинейные с бесконечной емкостью накопителя и дисциплиной FIFO (отметим, что приведенную ниже теорему нетрудно перенести на экспоненциальные узлы со случайным выбором прибора или места в очереди);

1) бесконечнолинейные;

2) однолинейные с бесконечной емкостью накопителя, инверсионной дисциплиной обслуживания с прерыванием обслуживания и дообслуживанием;

3) однолинейные с бесконечной емкостью накопителя и дисциплиной равномерного разделения прибора.

Множество узлов типа обозначается а число приборов в узле - .

Всюду, как и раньше, прописными латинскими буквами будем обозначать случайные величины, а их реализации - соответствующими строчными буквами, причем векторные случайные величины и векторы будем выделять полужирным шрифтом.

В сеть поступает пуассоновский поток заявок интенсивности , а каждая поступающая в заявка характеризуется набором случайных величин , не зависящих от аналогичных случайных величин для остальных заявок и предыстории функционирования сети, где:

Случайная длина маршрута заявки, т.е. число этапов, на которых она будет обслуживаться;

Случайный маршрут, представляющий собой набор номеров узлов (возможно повторяющихся), последовательно проходимых заявкой на всех L этапах;

Случайные объемы на последовательно проходимых этапах маршрута, вообще говоря, различные на различных этапах;

Случайные длительности обслуживания на последовательно проходимых этапах маршрута, также, вообще говоря, различные на различных этапах. Отметим, что если на некотором этапе заявка обслуживается в узле типа 2 или 3, то длительность обслуживания на данном этапе представляет собой то время, которое обслуживалась бы в этом узле заявка, если бы в нем не было других заявок.

Объем Y может иметь как реальный физический смысл в виде, например, объема памяти, необходимого для записи сообщения, так и носить вспомогательный характер, например, для задания типов заявок в сети; в последнем случае рассматриваемая модель может трактоваться, как сеть МО с континуальным множеством типов сообщений.

Очевидно, что при таком описании сети объем и длина соответствуют обслуживанию заявки в узле с номером . Напомним, что допускаются маршруты R, в которых номера могут повторяться, т.е. заявка может обслуживаться в одном и том же узле s несколько раз, причем с различными длительностями обслуживания.

Статистические характеристики случайной величины задаются совместной функцией распределения (ФР)

совместную ФР маршрута и объемов заявки на этапах, через

условную совместную ФР длительностей обслуживания заявки на этапах при фиксированных маршруте и объемах и через

условную ФР длительности обслуживания заявки на этапе (в узле с номером ) при фиксированных маршруте и объемах.

Относительно введенных функций делаются следующие предположения.

(П 1.) Длительности обслуживания предполагаются условно независимыми вдоль маршрута, т.е. условная ФР имеет вид

(П 2.) Экспоненциальные узлы s являются -линейными СМО (с бесконечной емкостью накопителя), интенсивности обслуживания в которых любой заявки каждым прибором равны

Таким образом, если , т.е. на этапе маршрута заявка обслуживается в узле s типа 0, то

Иными словами, длительность обслуживания в узле типа 0 не зависит ни от маршрута R, ни от объемов Y (включая объем ) и имеет экспоненциальное с параметром распределение.

(П 3). Функции распределения не содержат сингулярной компоненты.

Тогда их плотности, понимаемые в обычном смысле для абсолютно непрерывных распределений или в обобщенном смысле для дискретных и смешанных распределений, и обозначим через соответсвенно.

Кроме того, для узлов типов 1-3 положим

и для сокращения записи результатов обозначим дополнительно через

условные плотности распределения времени окончания (интенсивности) обслуживания заявки с характеристиками на этапе маршрута (в узле ) при условии, что она обслуживалась время Заметим при этом, что если на этапе маршрута заявка обслуживается в экспоненциальном узле с номером (т.е. если ), то

Сеть массового обслуживания представляет собой совокупность конечного числа N обслуживающих узлов, в которой циркулируют заявки, переходящие в соответствии с маршрутной матрицей из одного узла в другой.

Узел всегда является разомкнутой СМО (причем СМО может быть любого класса). Отдельные СМО отображают функционально самостоятельные части реальной системы, связи между СМО  структуру системы, а требования , циркулирующие по СеМО,  составляющие материальных потоков.

СеМО классифицируют по нескольким признакам (рис. 2.5).

Сеть называется линейной, если интенсивности потоков заявок в узлах связаны между собой линейной зависимостью , где коэффициент пропорциональности, или относительно источника .

Коэффициент (коэффициент передачи) характеризует долю заявок, поступающих вj -й узел от источника заявок, либо среднее число прохождений заявки через данный узел за время ее нахождения в сети.

Если интенсивности потоков заявок в узлах сети связаны нелинейной зависимостью (например, ), то сеть называется нелинейной.

Сеть всегда линейна, если в ней заявки не теряются и не размножаются.

Рис. 2.5. Классификация СеМО

Разомкнутая сеть – это такая отрытая сеть, в которую заявки поступают из внешней среды и из которой уходят после обслуживания во внешнюю среду. Особенностью разомкнутой СеМО (РСеМО) является наличие одного или нескольких независимых внешних источников, которые генерируют заявки, поступающие в сеть, независимо от того, сколько заявок уже находится в сети. В любой момент времени в РСеМО может находиться произвольное число заявок (от 0 до ).

В замкнутой СеМО (ЗСеМО) циркулирует фиксированное число заявок, а независимый внешний источник отсутствует. Исходя из физических соображений, в ЗСеМО выбирается внешняя дуга, на которой отмечается псевдонулевая точка, относительно которой могут измеряться временные характеристики. Число заявок в замкнутой сети постоянно.

Комбинированная сеть – это сеть, в которой постоянно циркулирует определенное число заявок и есть заявки, поступающие от внешних независимых источников.

В однородной сети циркулируют заявки одного класса. В неоднородной сети могут присутствовать заявки нескольких классов. Заявки относятся к разным классам, если они различаются хотя бы одним из следующих атрибутов:

– законом распределения длительности обслуживания в узлах;

– приоритетами;

– маршрутами (путями движения заявок в сети).

В экспоненциальной сети длительности обслуживания во всех узлах распределены по экспоненциальному закону и потоки, поступающие в разомкнутую сеть, простейшие (пуассоновские). Во всех остальных случаях сеть является неэкспоненциальной.

Если хотя бы в одном узле осуществляется приоритетное обслуживание, то это – приоритетная сеть. Приоритет – это признак, определяющий очередность обслуживания. Если заявки в узлах обслуживаются в порядке поступления, то такая сеть называется бесприоритетной .

Таким образом, экспоненциальной будем называть СеМО, отвечающую следующим требованиям:

– входные потоки СеМО пуассоновские;

– во всех N СМО время обслуживания заявок имеет экспоненциальную функцию распределения вероятностей, заявки обслуживаются в порядке прихода;

– переход заявки с выхода i -й на вход j -й СМО является независимым случайным событием, имеющим вероятность ,;– вероятность ухода заявки изCeМО.

Для наглядного представления СеМО используется граф, вершины которого (узлы) соответствуют отдельным СМО, а дуги отображают связи между узлами.

При аналитическом моделировании исследование процессов или объектов заменяется построением их математических моделей и исследованием этих моделей. В основу метода положены идентичность формы уравнений и однозначность соотношений между переменными в уравнениях, описывающих оригинал и модель. Поскольку события, происходящие в локальных вычислительных сетях, носят случайный характер, то для их изучения наиболее подходящими являются вероятностные математические модели теории массового обслуживания .

Аналитическая модель сети представляет собой совокупность математических соотношений, связывающих между собой входные и выходные характеристики сети. При выводе таких соотношений приходится пренебрегать какими-то малосущественными деталями или обстоятельствами .

Телекоммуникационная сеть при некотором упрощении может быть представлена в виде совокупности процессоров (узлов), соединенных каналами связи. Сообщение, пришедшее в узел, ждет некоторое время до того, как оно будет обработано. При этом может образоваться очередь таких сообщений, ожидающих обработки. Время передачи или полное время задержки сообщения:

где – время распространения, время обслуживания и время ожидания соответственно. Одной из задач аналитического моделирования является определение среднего значения D. При больших загрузках основной вклад дает ожидание обслуживания IV. Для описания очередей в дальнейшем будет использована нотация Д. Дж. Кенделла:

где А – процесс прибытия; В – процесс обслуживания; С – число серверов (узлов); К – максимальный размер очереди (по умолчанию – ∞);

in – число клиентов (по умолчанию – да); z – схема работы буфера (по умолчанию FIFO).

Буквы А и В представляют процессы прихода и обслуживания и обычно заменяются следующими буквами, характеризующими закон, соответствующий распределению событий:

Наиболее распространенными схемами работы буферов являются

FIFO (First-In-First-Out), LIFO (Last-In-First-Out) и FIRO (First-In- Random-Out). Например, запись M/M/2 означает очередь, для которой времена прихода и обслуживания имеют экспоненциальное распределение, имеется два сервера, длина очереди и число клиентов могут быть сколь угодно большими, а буфер работает по схеме FIFO .

Среднее значение длины очереди Q при заданной средней входной частоте сообщений λ и среднем времени ожидания W определяется на основе теоремы Литла (1961) :

Для варианта очереди M/G/ 1 входной процесс характеризуется распределением Пуассона со скоростью поступления сообщений λ. Вероятность поступления к сообщений на вход за время t равно:

(3.3)

Пусть N – число клиентов в системе, Q – число клиентов в очереди и пусть вероятность того, что входящий клиент обнаружит j других клиентов, равна:

Тогда среднее время ожидания:

где σ – среднеквадратичное отклонение для распределения времени обслуживания.

Для варианта очереди(Η – функция

распределения времени обслуживания). Откуда следует.

Для варианта очереди M/D/ 1 время обслуживания постоянно, а среднее время ожидания составляет:

Рассмотрим вариант сети Ethernet на основе концентратора- переключателя с числом каналов N. При этом будет предполагаться, что сообщения на входе всех узлов имеют пуассоновское распределение со средней интенсивностью, распределение сообщений по длине произвольно. Сообщения отправляются в том же порядке, в котором они прибыли. Трафик в сети предполагается симметричным. Очередь имеет модель. Среднее время ожидания в этом случае равно:

где

(3.9)

где, аравно вероятности того, что сообщение отправителя /" направлено получателю. Требование стабильности требует, чтобы. Для бо́льших n это приводит к

Работа сети Ethernet характеризуется рядом параметров, к числу которых относятся вероятность захвата канала и эффективность . Первый параметр определяется по выражению

где Ρ – вероятность того, что ровно одна станция попытается передать кадр в течение такта и захватить канал; Q – число станций, пытающихся захватить канал для передачи кадра данных.

Эффективность LAN Ethernet определяется следующим образом. Общее время работы сети Ethernet делится между интервалами передачи и интервалами конкуренции. Для передачи кадра данных требуется L/C секунд, где L – длина кадра в битах, С – скорость передачи данных в бит/сек. Среднее время Τ , необходимое на захват канала, равно:

где W – среднее число тактов, прошедших в интервале конкуренции, пока станция не захватит канал для передачи кадра данных; В – длительность такта или время до обнаружения конфликта после начала передачи кадра.

Среднее число тактов W рассчитывается следующим образом:

С учетом введенных показателей эффективность Ε работы локальной сети Ethernet определяется следующим образом:

Для моделирования ЛВС наиболее часто используются следующие типы СМО:

  • 1. Одноканальные СМО с ожиданием. Представляют собой один обслуживающий прибор с бесконечной очередью. Данная СМО является наиболее распространенной при моделировании. С той или иной долей приближения с ее помощью можно моделировать практически любой узел ЛВС.
  • 2. Одноканальные СМО с потерями. Представляют собой один обслуживающий прибор с конечным числом мест в очереди. Если число заявок превышает число мест в очереди, то лишние заявки теряются. Этот тип СМО может быть использован при моделировании каналов передачи в ЛВС.
  • 3. Многоканальные СМО с ожиданием. Представляют собой несколько параллельно работающих обслуживающих приборов с общей бесконечной очередью. Данный тип СМО часто используется при моделировании групп абонентских терминалов ЛВС, работающих в диалоговом режиме.
  • 4. Многоканальные СМО с потерями. Представляют собой несколько параллельно работающих обслуживающих приборов с общей очередью, число мест в которой ограничено. Эти СМО, как и одноканальные с потерями, часто используются для моделирования каналов связи в ЛВС.
  • 5. Одноканальные СМО с групповым поступлением заявок. Представляют собой один обслуживающий прибор с бесконечной очередью. Перед обслуживанием заявки группируются в пакеты по определенному правилу.
  • 6. Одноканальные СМО с групповым обслуживанием заявок. Представляют собой один обслуживающий прибор с бесконечной очередью. Заявки обслуживаются пакетами, составляемыми по определенному правилу. Последние два типа СМО могут использоваться для моделирования таких узлов ЛВС, как центры (узлы) коммутации.

Локальная вычислительная сеть в целом может быть представлена в виде сети массового обслуживания. Различают открытые , замкнутые и смешанные сети.

Открытой называется есть массового обслуживания, состоящая из Μ узлов, причем хотя бы в один из узлов сети поступает извне входящий поток заявок и имеется сток заявок из сети. Для открытых сетей характерно то, что интенсивность поступления заявок в сеть не зависит от состояния сети, т. е. от числа заявок, уже поступивших в сеть. Открытые сети используются для моделирования ЛВС, работающих в неоперативном режиме. Каждая заявка поступает на вход соответствующего узла коммутации, где определяется место ее обработки. Затем заявка передается на "свой" сервер или по каналу связи – на "соседний", где обрабатывается, после чего возвращается к источнику и покидает сеть .

Замкнутой называется сеть массового обслуживания с множеством узлов Μ без источника и стока, в которой циркулирует постоянное число заявок. Замкнутые СМО используются для моделирования таких ЛВС, источниками информации для которых служат абонентские терминалы, работающие в диалоговом режиме. В этом случае каждая группа абонентских терминалов представляется в виде многоканальной системы массового обслуживания с ожиданием и включается в состав устройств сети .

Различают простой и сложный режимы работы диалоговых абонентов. В простом режиме абоненты не производят никаких действий, кроме посылки заданий в ЛВС и обдумывания полученного ответа .

Абоненты с терминалов посылают запросы, которые по каналам связи поступают на узлы коммутации, а оттуда – на обработку на "свой" или "соседний" сервер. Дальнейшая обработка осуществляется так же, как в открытой сети .

При сложном режиме диалога работа абонентов представляется в виде совокупности операций некоего процесса, называемого технологическим. Каждая операция технологического процесса моделируется соответствующей СМО. Часть операций предусматривает обращение к ЛВС, а часть операций может такого обращения не предусматривать . Алгоритм работы самой ЛВС такой же, как для замкнутой сети.

Смешанной называется сеть массового обслуживания, в которой циркулирует несколько различных типов заявок (графика), причем относительно одних типов заявок сеть замкнута, а относительно других – открыта. С помощью смешанных СМО моделируются такие ЛВС, часть абонентов которых работает в диалоговом, а часть – в неоперативном режиме. Для диалоговых абонентов также различают простой и сложный режим работы. Часто смешанные СМО моделируют ЛВС, в которых сервер дополнительно загружается задачами, решаемыми на фоне работы самой сети .

Алгоритм работы сети для диалоговых абонентов аналогичен алгоритму работы замкнутой сети, а алгоритм работы сети для неоперативных абонентов – алгоритму работы открытой сети.

Различают экспоненциальные и неэкспоненциальные модели ЛВС. Экспоненциальные модели основаны на предположении о том, что потоки заявок, поступающие в ЛВС, являются пуассоновскими, а время обслуживания в узлах ЛВС имеет экспоненциальное распределение.

Для таких сетей получены точные методы для определения их характеристик; трудоемкость получения решения зависит в основном от размерности сети .

Однако в большинстве сетей (и локальных сетей в частности) потоки не являются пуассоновскими. Модели таких сетей называются неэкпоненциальными . При анализе неэкспоненциальных сетей в общем случае отсутствуют точные решения, поэтому наибольшее применение здесь находят приближенные методы.

Одним из таких методов является метод диффузионной аппроксимации . Использование диффузионной аппроксимации позволило к настоящему времени получить приближенные аналитические зависимости для определения характеристик всех типов СМО, рассмотренных выше.

При этом не требуется точного знания функций распределения случайных величин, связанных с данной СМО (интервалов между поступлениями заявок временем обслуживания в приборах), а достаточно только знание первого (математического ожидания) и второго (дисперсии или квадрата коэффициента вариации – ΚΚΒ) моментов этих величин .

Применение диффузионной аппроксимации при анализе ЛВС основано на следующем:

  • по каждому типу заявок вычисляется интенсивность поступления заявок данного типа в узлы сети так, как если бы данный поток заявок циркулировал в сети только один;
  • по определенному правилу, зависящему от типа СМО и дисциплины обслуживания, складываются потоки заявок от всех источников;
  • по определенному правилу определяется среднее время обслуживания в каждом узле ЛВС;
  • полученные значения подставляются в соответствующую диффузионную формулу и определяются характеристики узлов ЛВС;
  • определяются характеристики ЛВС в целом.

Постановка задачи анализа ЛВС при этом примет следующий вид. Дано:

  • число узлов ЛВС;
  • тип каждого узла ЛВС (тип СМО, моделирующей данный узел);
  • дисциплина обслуживания в каждом узле ЛВС;
  • общее число типов источников заявок, работающих в диалоговом режиме;
  • общее число типов источников заявок, работающих в неоперативном режиме;
  • для диалоговых источников в случае сложного режима работы число технологических процессов каждого типа, число операций в каждом технологическом процессе, среднее и ΚΚΒ времени выполнения каждой операции, матрица вероятностей передач между операциями, а также наличие или отсутствие на каждой операции обращения к ЛВС;
  • для диалоговых источников в случае простого режима работы число источников (терминалов) каждого типа, среднее и ΚΚΒ времени реакции абонента на ответ сети;
  • для неоперативных абонентов – средняя интенсивность поступления заявок и ΚΚΒ времени между поступлениями заявок; по каждому типу заявок (диалоговому и неоперативному) средняя интенсивность обслуживания в каждом узле ЛВС, ΚΚΒ времени обслуживания в узлах ЛВС и матрица вероятностей передач между узлами. Требуется найти:
  • среднее значение и дисперсию (или стандартное отклонение) времени задержки заявки каждого типа в ЛВС в целом;
  • среднее значение и дисперсию (или стандартное отклонение) времени задержки в узлах ЛВС;
  • загрузку узлов ЛВС;
  • вероятность потери заявки в узле ЛВС (для узлов, моделируемых СМО с потерями).

Ограничения могут быть следующими:

  • вероятность потери заявки не должна превышать 1;
  • все характеристики должны быть положительны.
  • Иногда представляет интерес определение такого показателя, как максимальное время задержки заявки каждого типа в ЛВС. Максимальное время – это такое время, превышение которого допустимо лишь для некоторого, наперед заданного процента заявок каждого типа. Для определения максимального времени используется методика, основанная на аппроксимации функции распределения времени задержки в сети эрланговским или гипсрэкспонснциальным распределением, при этом необходимо задавать долю (процент) заявок, для которых рассчитывается максимальное время.

    Сеть массового обслуживания (СеМО) - сеть, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на:истемы с потерями, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются;истемы с ожиданием, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;истемы с накопителем конечной ёмкости (ожиданием и ограничениями), в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется.

    Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (или требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок, в общем случае, также длится не постоянное, заранее известное, а случайное время. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока и времени их обслуживания приводит к неравномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться необслуженные заявки (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды при свободных каналах на входе СМО заявок не будет, что приводит к недогрузке СМО, т.е. к простаиванию каналов.

    Таким образом, во всякой СМО можно выделить следующие основные элементы:

    ) входящий поток заявок;

    ) очередь;

    ) каналы обслуживания;

    ) выходящий поток обслуженных заявок.

    Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производительности, а также от правил организации работы, обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

    Предметом изучения теории массового обслуживания являются СМО.

    Цель теории массового обслуживания - выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

    Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффективности функционирования СМО от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

    Случайный характер потока заявок и длительности их обслуживания порождает в СМО случайный процесс.

    Определение: Случайным процессом (или случайной функцией) называется соответствие, при котором каждому значению аргумента (в данном случае - моменту из промежутка времени проводимого опыта) ставится в соответствие случайная величина (в данном случае - состояние СМО). массовое обслуживание