Меню Рубрики

Шестой уклад технологического развития. Технологические уклады: понятие, характеристика, влияние на экономический рост

Вестник Ставропольского государственного университета

ШЕСТОЙ ТЕХНОЛОГИЧЕСКИЙ УКЛАД И ПЕРСПЕКТИВЫ РОССИИ (КРАТКИЙ ОБЗОР)

В. М. Авербух

THE SIXTH TECHNOLOGICAL SETUP AND PERSPECTIVES OF RUSSIA (ABSTRACT)

The article describes the fragments of the economy and science condition in Russia, technological setups, long-range forecasts of innova-tional technologies for 2030. The aim is to enter the 6th technological setup in accordance with the materials of the Russian Academy of Science of2008.

Key words: economy, export, technological setup, long-range forecast, the forecast period -2030.

В статье рассмотрены: фрагменты состояния экономики и науки России; технологические уклады; долгосрочные прогнозы инновационных технологий на 2030 г.; цель -вхождение в шестой технологический уклад, по материалам сессии РАН 2008 г.

Ключевые слова: экономика, экспорт, технологический уклад, долгосрочный прогноз, период прогнозирования 2030 год.

УДК 681.513.54:681.578.25

Трудами выдающегося отечественного экономиста Н. Д. Кондратьева было сформулировано понятие цикличности в экономике . Эта теория получила дальнейшее развитие в работах академиков Д. С. Львова и С. Ю. Глазьева под современным названием «Технологический уклад» . Технологический уклад (волна) - совокупность технологий, характерных для определенного уровня развития производства; в связи с научным и технико-технологическим прогрессом происходит переход от более низких укладов к более высоким, прогрессивным.

В настоящее время различают шесть технологических укладов (рис. 1). Мир идет к шестому технологическому укладу, приближается к нему, работает над ним. Россия находится сегодня в основном в третьем, четвертом и на первых этапах пятого технологического уклада. К последнему относятся главным образом предприятия высокотехнологичного военно-промышленного комплекса.

Третий технологический уклад -(1880-1940 гг.) базируется на использовании в промышленном производстве электрической энергии, развитии тяжелого машиностроения и электротехнической промышленности на основе использования стального проката, новых открытий в области химии. Были внедрены радиосвязь, телеграф, автомобили. Появились крупные фирмы, картели, синдикаты, тресты. На рынке господствовали монополии. Началась концентрация банковского и финансового капитала.

Четвертый уклад (1930-1990 гг.) основан на дальнейшем развитии энергетики с использованием нефти и нефтепродуктов, газа, средств связи, новых синтетических материалов. Это эра массового производства автомобилей, тракторов, самолетов, различных видов вооружения, товаров народного потребления. Появились и широко распространились компьютеры и программные продукты для них, радары. Атом используется в военных и затем в мирных целях. Организовано массовое производство на основе конвейерной технологии. На рынке господствует олигопольная конкуренция. Появились транснациональные и межнациональные компании, которые осуществляли прямые инвестиции в рынки различных стран.

Пятый уклад (1985-2035 гг.) опирается на достижения в области микроэлектроники, информатики, биотехнологии, генной инженерии, новых видов энергии, материалов, освоения космического пространства, спутниковой связи и т. п. Происходит переход от разрозненных фирм к единой сети крупных

и мелких компаний, соединенных электронной сетью на основе Интернета, осуществляющих тесное взаимодействие в области технологий, контроля качества продукции, планирования инноваций.

Шестой технологический уклад будет характеризоваться развитием робототехники, биотехнологий, основанных на достижениях молекулярной биологии и генной инженерии, нанотехнологии, систем искусственного интеллекта, глобальных информационных сетей, интегрированных высокоскоростных транспортных систем. В рамках шестого технологического уклада дальнейшее развитие получит гибкая автоматизация производства, космические технологии, производство конструкционных материалов с заранее заданными свойствами, атомная промышленность, авиаперевозки, будет расти атомная энергетика, потребление природного газа будет дополнено расширением сферы использования водорода в качестве экологически чистого энергоносителя, существенно расширится применение возобновляемых источников энергии.

Ритм снны тшюлогашскы* уклад» и поколений тиниш

Рисунок 1. Технологические уклады

Таким образом, перед нашей страной стоит наиважнейшая и наисложнейшая задача - осуществить переход к шестому укладу (не до конца освоив предшествующий пятый) и догнать в этом направлении передовые страны. Этот этап уже начался и продлится 50-60 лет. За это время мир продвинется далее к седьмому или даже восьмому технологическому этапу. И нам надо и это учитывать в своих долгосрочных прогнозах .

Будущее закладывается в прошлом и настоящем. Ниже приводятся фрагменты нынешнего состояния экономики и научных исследований России.

Сложившийся уровень жизни большинства населения РФ поддерживается за счет экспорта, доля которого в мировом ВВП составляет менее 2 %. Основные статьи экспорта: газ и нефть (70 %), первичные (не обработанные) металлы (15 %), круглый (не обработанный) лес (10 %). Все остальное, включая оборудование, технологии, вооружение -менее 5 %. Доля России на мировых рынках высоких технологий едва достигает 0,2-0,3 %.

Прорыв возможен только за счет создания новых наукоемких технологий, в первую очередь, для экспорта. Но известно, что расходы на научные исследования в Российской Федерации за предыдущие 18 лет сократились более чем в пять раз и приблизились к уровню развивающихся стран. Россия сегодня тратит на науку в семь раз меньше, чем Япония, и в 20 раз меньше, чем США . Более чем в два раза уменьшилось количество исследователей; многие теперь работают за границей. Количество отечественных публикаций несколько снижается, в то время как, например, в Индии и Бразилии резко возрастает. Таким образом, в целом по уровню развития высоких технологий страна откатилась, по самым скромным оценкам, на 10-15 лет назад, а по некоторым направлениям - даже на 20.

Осуществить прорыв в разработке новейших, конкурентоспособных технологий возможно, осуществив долгосрочное прогнозирование и перспективное планирование научных исследований и последующим производством новейших технологий и продуктов.

Рисунок 2. Доля производителей высокотехнологичной продукции в мире (по работе 5)

Толчок для активизации прогнозных разработок дал Президент РФ Д. А. Медведев, поручив в срочном порядке в 2008 г. РАН разработать научно-технические прогнозы развития страны на долгосрочную перспективу - до 2030 года с целью вывода экономики страны из того глубоко неудовлетворительного состояния практически всего положения дел в стране: науке, технике, экономике. А главное - выйти на международный рынок с высокотехнологичными разработками.

В 2008 г. на общем собрании РАН под названием «Научно-технической прогноз -важнейший элемент стратегии развития России» во вступительном слове президент РАН академик Ю. С. Осипов подчеркнул: «Наша академия рассматривает проведение прогнозных исследований как один из приоритетов своей деятельности...» .

Для активизации научного прогнозирования есть две причины.

Внешнюю причину назвал академик А. Дынкин. По его данным, научно-техническим прогнозированием занимается более 70 стран, в их числе - даже Малайзия (28 мил. жителей, доход на душу населения 14 тыс дол.). В этих странах изучаются рыночные возможности изобретений, технологий (т. е. прогнозируют применение), выявляют препятствия для продвижения разработки в практику. Наша отечественная бизнес-среда откровенно враждебна к инновациям. Россия выбрала ошибочный путь -приобретать высокие технологии за рубежом, сокращая до нуля вложения в собственную науку. По мнению академика А. Д. Не-кипелова, внутренняя причина - необходимость отхода от топливно-сырьевого сценария развития страны возрастающими темпами, в связи с чем проблема технологического прогнозирования вышла на первый план .

На сессии было сделано 9 докладов и 8 выступлений по рассматриваемой тематике. В принятом Постановлении общего собрания РАН записано: «... считать работу в области НТП одним из приоритетных направлений деятельности РАН; одобрить инициативу Президиума РАН о создании Межведомственного координационного совета

РАН по социально-экономическому и научно-технологическому прогнозированию; обратится в Правительство РФ с предложением о создании единой системы государственного прогнозирования с целью определения на научной основе приоритетов развития страны.

Создан Координационный совет РАН по прогнозированию под руководством вице-президента А. Д. Некипелова. Сформированы следующие 15 тематических секций:

1. Теории, методики и организации прогнозирования. 2. Моделирования и информационного обеспечения. 3. Прогнозирования экономической динамики. 4. Прогнозирования развития науки, образования и инноваций. 5. Прогнозирования развития нанотех-нологий и новых материалов. 6. Прогнозирования биологии и медицинских технологий. 7. Прогнозирования информационно-коммуникационных технологий. 8. Прогнозирования АПК. 9. Прогнозирования социального и демографического развития. 10. Прогнозирования природопользования и экологии. 11. Прогнозирования энергетического комплекса. 12. Прогнозирования машиностроения, ОПК и транспорта. 13. Прогнозирования социально-политических процессов и институтов. 14. Прогнозирования пространственного развития. 15. Прогнозирования развития мировой экономики и международных отношений.

Академией создан документ «Прогноз - 2030» . На его основе Президент РФ Д. А. Медведев озвучил основные векторы экономической модернизации страны на 20 лет: 1) Лидерство по эффективности производства, транспортировки и использования энергии. Новые виды топлива; 2) Развитие ядерных технологий; 3) Совершенствование информационных и глобальных сетей. Суперкомпьютеры; 4) Космические исследования будут приносить реальную пользу во всех областях деятельности наших граждан от путешествий до с/х и промышленности; 5) Значительный прорыв в медицинской технике, диагностике и лекарственных препаратах. Естественно - вооружение и развитие с/хозяйства.

Вестник Ставропольского государственного университета [¡вдН

Главная задача - конкурентоспособность и выход по всем направлениям на международный рынок, повысить эффективность продукции на внутреннем рынке. Возможно - смешанные прогнозы.

По мнению Осипова Ю. С., «собственно прогноз должен разрабатываться научным сообществом под эгидой государства...необходимо создать единую систему государственного прогнозирования, с помощью которой власти могли бы на научной основе определять приоритеты стратегического развития страны».

В своем выступлении в 2009 г. Д. А. Медведев сказал: «Переход страны на более высокую ступень цивилизации возможен. И он будет осуществлен ненасильственными методами. Не принуждением, а убеждением. Не подавлением, а раскрытием творческого потенциала каждой личности. Не запугиванием, а заинтересованностью. Не противостоянием, а сближением интересов личности, общества и государства...интеллектуальными ресурсами, «умной» экономикой, создающей уникальные знания, экспортом новейших технологий и продуктов инновационной деятельности».

По нашему мнению, взаимодействие между долгосрочным прогнозированием, бизнесом, регионами, государством и разработчиками (изобретателями) должно быть закреплено законодательным путем, с определением степени и формы участия, меры ответственности и. д. Конечным итогом должно быть введение продукта, технологии на внешний рынок. О необходимости принятия законодательной базы в области инновационного развития и прогнозировании говорилось на заседании Межведомственной группы в рамках IV национального конгресса «Приоритеты развития экономики. Модернизация и технологическое развитие экономики России» (Москва, 8 октября 2009 г.) .

Говорил Д. А. Медведев и о политико-экономико-социальных задачах. Он полагает, что «изобретатель, новатор, ученый, учитель, предприниматель станут самыми уважаемыми людьми в обществе. Получат все

необходимое для плодотворной деятельности». В эту программу входит привлечение зарубежных специалистов, и льготы для исследователей, и законодательная и государственная поддержка».

Далее Д. А. Медведев сказал: «Мы будем повышать эффективность социальной сферы по всем направлениям, уделяя повышенное внимание задачам материального и медицинского обеспечения ветеранов и пенсионеров». Собственно, это и есть главная цель долгосрочного прогнозирования с целью создания технологий шестого технологического уклада.

Успешная реализация научно-технических прогнозов позволит грамотно разрабатывать, а затем и реализовать социальные прогнозы развития страны. Ведь в этом главная задача развития страны.

По мнению Б. Н. Кузыки, в ряде технологий шестого уклада уже имеется определенный задел. В России по состоянию на 2008 г. есть прорывные исследования и разработки в области критических технологий практически по всем направлениям шестого технологического уклада (рис. 3) .

Таким образом, исследования, выполненные по ключевым направлениям шестого технологического уклада, говорят о том, что у нас есть шанс. Надо сосредоточить именно на этих приоритетах кадровый, финансовый, организационный ресурсы, чтобы не тратить силы на развитие тех направлений, по которым другие страны ушли уже слишком далеко относительно нашего уровня, и нам придется заимствовать мировые достижения.

Но для успешного выполнения прогнозов и вхождения в шестой технологический уклад необходимо, на наш взгляд, на правительственном уровне закрепить порядок взаимодействия между РАН и бизнесом. Ученые РАН определяют вектора (долгосрочное прогнозирование), а корпорации, бизнес-сообщество по направлению обосновывает генеральную цель исследований, составляет техническое задание на разработку исследовательского, нормативного и организационного прогноза, вплоть до промышленной реализации продукции с указанием

И пформациоппо-комму п ика циОп -пые системы 1 технологии производства программного обеспечения 1 биоинформационные технологии 1 технологии создания интеллектуальных систем навигации и управления 1 технологии обработки, хранения, передачи и защиты информации 1 технологии распределенных вычислений и систем 1 технологии создания электронной компонентной базы Рациональное природопользование 1 технологии мониторинга и прогнозирования состояния атмосферы и гидросферы 1 технологии оценки ресурсов и прогнозирования состояния литосферы и биосферы > технологии снижения риска и уменьшения последствий природных и техногенных катастроф > технологии переработки и утилизации техногенных образований и отходов > технологии экологически безопасной разработки месторождений и добычи полезных ископаемых

Индустрия наносистем и материалы 1 технологии создания биосовместимых материалов 1 технологии создания мембран и каталитических систем 1 технологии создания и обработки полимеров и эластомеров 1 технологии создания и обработки кристаллических материалов 1 технологии создания и обработки композиционных и керамических материалов 1 нанотехнологии и нан о материалы 1 технологии мехатроники и созрания микросистемной техники

Энергетика и энергосбережение 1 технологии атомной энергетики, ядерного топливного цикла, безопасного обращения с радиоактивными отходами и отработанным ядерным топливом > технологии водородной энергетики 1 технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии > технологии новых и возобновляемых источников энергии 1 технологии производства топлива и энергии из органического сырья

Живые системы 1 технологии биоинженерии 1 биокаталитические, биосинтетические и биосенсорные технологии 1 биомедицинские и ветеринарные технологии жизнеобеспечения и защиты человека и животных 1 геномные и постгеномные технологии созрания лекарственных срерств 1 технологии экологически безопасного ресурсосберегающего производства и переработки сельскохозяйственного сырья и продуктов питания 1 клеточные технологии

Транспортные и авиационно-космические технологии > технологии создания новых поколений ракетно-космической, авиационной и морской техники > технологии создания и управления новыми видами транспортных систем 1 технологии создания энергоэффективных двигателей и движителей для транспортных систем

Уровень российских разработок соответствует мировому, а в отдельных областях Россия лидирует

Российские разработки в целом соответствуют мировому уровню * Российские разработки в целом уступают мировому уровню и лишь в отдельных областях уровень сопоставим

Рисунок 3. Состояние основных исследований и разработок в России на 2008 год (по работе 5)

Вестник Ставропольского государственного университета [¡вдН

возможных сроков выполнения отдельных этапов. Соответственно, фирмы должны в своих финансовых планах закладывать на прогнозирование, развитие научных исследований до 3-5 % бюджета, возможно, совместно с государством. И вся эта работа должна находиться под контролем секций по прогнозированию РАН и Правительства России. Это не принуждение бизнеса, а правила, такие же как Правила дорожного движения, обязательные к выполнению всеми участниками. И за нарушение (не выделение соответствующих средств, срыв сроков и т. п.) должны применяться штрафные санкции. Но должны быть и поощрительные мероприятия.

Не следует забывать, что такое масштабное прогнозирование - от векторов развития страны до конкретных технологий и их параметров нуждается в эффективной организации информационного обеспечения прогностической деятельности.

Причем, осуществляя научно-техническое прогнозирование, следует соблюдать один из основных принципов прогнозирования - взаимосвязь научно-технических и социальных прогнозов .

Однако, чтобы не было перекосов - забвение внутреннего развития элементов 4 и 5 технологических укладов, необходимо про-

водить прогнозирование и по этим направлениям.

Общество, особенно бизнес-общество, должно осознать, что без научного прогнозирование дальнейшее развитие нашей страны просто не возможно. А для успешного прогнозирования необходимо готовить специалистов-прогнозистов. Поскольку прогнозирование предполагается проводить и по развитию регионов, то федеральные университеты просто должны создать кафедры футурологии и готовить прогнозистов технического, социологического и других направлений, в зависимости от экономики региона. И в структуре управления регионами, городами должны быть прогностические подразделения. Вопросы научного прогнозирования в нашей стране должны решаться на государственном уровне всем нашим сообществом.

В заключение следует отметить, что прогнозировать, создавать новые технологии, пользоваться ими в шестом технологическом укладе придется уже нынешним школьникам, поэтому без переориентирования всей системы образования на новый уровень технологической жизни в повседневности, без всеобщего подъема культурного уровня всех слоев нашего общества, технологический прогресс не даст ожидаемого эффекта.

ЛИТЕРАТУРА

1. Авербух В. М. Комплексный подход к прогнозированию в научно-производственном объединении //Всесоюзная научно-практическая конференция «Эффективность объединений и совершенствование хозрасчета. Пленарное заседание секции Проблемы совершенствования хозрасчета в объединениях»: тезисы докладов. - Л., 1979. - С. 138-139.

2. Актуальные проблемы инновационного развития. Выбор инновационных приоритетов: Материалы заседания Межведомственной рабочей группы в рамках IV национального конгресса «Приоритеты развития экономики, модернизация и технологическое развитие экономики России» (Москва, 8 октября 2009 г.): информ. бюллетень. Вып. 11. - М. , 2010. - С. 7-21.

3. Глазьев С. Ю. Выбор будущего. - М.: Алгоритм, 2005.

4. Кондратьев Н. Д. Большие циклы конъюнктуры и теория предвиденья: избранные труды. - М.: Экономика, 2002.

5. Кузык Б. Н. Инновационное развитие России: сценарный подход. (Опубликовано киг в 5 января, 2910 - 13: 56).

6. Львов Д. С. Эффективность управления техническим развитием. М.: Экономика, 1990.

7. Научная сессия Общего собрания Российской академии наук «Научно-технологический прогноз - важнейший элемент стратегии развития России» // Вестник Российской академии наук. - 2009. - Т. 79. - № 3. - С. 195-261

8. Прогноз научно-технического развития Российской Федерации на долгосрочную пер-

спективу (до 2030 г.) // Концептуальные подходы, направления, прогнозные оценки и условия реализации. - М.: РАН, 2008.

Авербух Виктор Михайлович, ГОУ ВПО

«Ставропольский государственный университет», доктор технических наук, старший научный

сотрудник; заведующий сектором научно-технической информации научно-исследовательской части СГУ. Сфера научных интересов -научно-техническое прогнозирование, научно-техническая информация, история науки. [email protected]

Нет ничего более постоянного, чем перемены.

Карл Людвиг Бёрне

Инновации сегодня идут сплошным увеличивающимся потоком, их появление – не разовое исключительное событие, а уже целая индустрия, которая становится основным источником государственных доходов. Место государства на мировой арене в наше время стало определяться не величиной армии и даже не ее техническим оснащением, а успешностью и быстротой массового внедрения технических инноваций. На долю новых знаний, воплощаемых в технологиях, оборудовании, образовании кадров, организации производства, в развитых странах приходится от 70 до 85% прироста валового внутреннего продукта (ВВП).

При этом постоянно растет доля государственных расходов на науку и образование, достигая в развитых странах в среднем 3% ВВП, и доля частных инвестиций в инновации может быть в разы больше государственного финансирования. И все это необходимо делать не только для того, чтобы улучшить жизнь населения, но и для победы в технологической гонке, приз в которой, ни много ни мало – сохранение государственности и национальной независимости.

В свое время Сергеем Юрьевичем Глазьевым была разработана теория долгосрочного технико-экономического развития. Основа этой теории – идея последовательной смены технологических укладов.

Технологический уклад (ТУ) – совокупность технологий, характерных для определенного уровня развития производства.

В рамках ТУ осуществляется замкнутый цикл, включающий добычу и получение первичных ресурсов, все стадии их переработки и выпуск набора конечных продуктов, удовлетворяющих соответствующий тип общественного потребления.

Например, крестьянин выращивает лен, на фабрике его перерабатывают, ткут ткань, шьют занавес, используют в театре. Если бы лен не был выращен, гвоздь не выкован, электричество не выработано, то и театр был бы другим, если бы вообще был.

В связи с научным и технико-технологическим прогрессом происходит переход от более низких укладов к более высоким, прогрессивным.

Таблица 1

Технологические уклады

ТУ

Годы

Ядро

Ключевой фактор

Технологичес- кие лидеры

Текстильная промышленность, текстильное машиностроение, выплавка чугуна, обработка железа, строительство каналов, водяной двигатель

Текстильные машины

Великобритания,

Франция, Бельгия

Паровой двигатель, железнодорожное строительство, транспорт, машино-, пароходостроение, угольная, станкоинструментальная промышленность черная металлургия

Паровой двигатель,

Великобритания,

Франция, Бельгия, Германия,

Электротехническое, тяжелое машиностроение, производство и прокат стали, линии электропередач, неорганическая химия

Электро-двигатель,

Великобритания, Франция,

Бельгия, Германия,

Автомобиле-, тракторостроение, цветная металлургия, производство товаров длительного пользования, синтетические материалы, орга­ническая химия, производство и переработка нефти

Двигатель внутреннего сгорания, нефтехимия

Западной Европы, СССР,

Электронная промышленность, вычислительная, оптико-волоконная техника, программное обеспечение, телекоммуникации, роботостроение, производство и переработка газа, информационные услуги.

Микро-электронные компоненты

Клеточные технологии и методы генной инженерии; альтернативная энергетика

Нанотехнологии

ТУ проявляется во всех сферах человеческой жизни, от добычи природных ресурсов и профессиональной подготовки кадров до непроизводственного потребления. Например, изобретение парового двигателя привело к увеличению добычи угля, бурному росту городов, повышению производительности труда, появлению квалифицированного рабочего класса, к изменению проведения досуга большими массами населения. Поэтому, как это не покажется странным на первый взгляд, вполне можно выстроить причинно-следственную цепочку от парового двигателя к появлению кино, фотографии, радио, театру, войнам, революциям и т.п.

В соответствии с теорией, предложенной С. Ю. Глазьевым, можно объяснить смену мировых лидеров: то государство, которое первым вступает в новый технологический уклад, получает преимущество и быстро становится основным игроком на мировой арене. В таблице 1 указаны периоды основных технологических укладов, определяющие их ключевые факторы, технологическое ядро и те страны, которые первыми вступили в новый уклад.

1 технологический уклад. 1770 - 1830 годы. Ключевым фактором, определяющим новый технологический уклад, является изобретение и внедрение текстильных машин. Естественно, что это повлекло за собой развитие текстильной промышленности и текстильного машиностроения, что, в свою очередь, потребовало больше чугуна и железа для изготовления станков. Для приведения станков в движение необходим источник энергии. Это привело к строительству каналов для обеспечения работы водяных двигателей и транспортировки товаров. Лидерами стала, в первую очередь, Великобритания, затем Франция и Бельгия.

Быстро стали появляться заводы и фабрики с узкоспециализированным разделением труда между её работниками. Предметная система труда, при которой ремесленник изготавливал изделие от начала и до конца, уступила место операционной. Теперь рабочий выполнял только отдельные операции по изготовлению конечного продукта – быстро, качественно, дёшево. Воцарился прагматичный капитализм, резко поменявший быт, социальное устройство и мировоззрение общества. Вместо лавок ремесленников, торгующих только тем, что сами сделали, стали появляться прототипы современных магазинов, предлагающие многообразные товары промышленного производства.

2 технологический уклад. 1830 - 1880 годы. Катализатором перехода к новому технологическому укладу стал паровой двигатель. Его появление позволило производство сделать энергетически независимым от рек. Теперь появилась возможность размещать фабрики и заводы в больших городах, где есть рабочая сила и необходимая инфраструктура. Впервые у человека появился свой рукотворный источник энергии, настолько мощный и компактный, что его можно поместить на корабль и даже на самодвижущуюся повозку. Символом изменений стала железная дорога. Хотя поначалу многие просвещенные люди того времени предсказывали неудачу этой диковинке. Например, прусский король считал, что «никто не будет платить приличные деньги за то, чтобы добраться из Берлина в Потсдам за час, в то время, как можно на своей лошади потратить на ту же самую поездку день и ничего при этом не платить». При пуске первой железной дороги в России на первый поезд посадили солдат, так как у специалистов были опасения, что при такой огромной скорости в 60 км/ч от быстрой смены пейзажей человек может сойти с ума. Но с ума никто не сошел, а там, где прокладывалась железнодорожная ветка, жизнь резко изменялась.

Бурно развивалось машино-, пароходостроение. Это потянуло за собой развитие станкоинструментальной промышленности, черной металлургии. Основным энергоносителем стал уголь, что привело к золотому веку угольной промышленности.

К группе мировых лидеров добавляется Германия и США. Увеличивается концентрация производства, и города становятся еще больше.

Российские начинания в области постройки и использования паровых двигателей так и остались уделом отдельных одиночек, таких как отец и сын Черепановы. Это привело к снижению темпов развития Российской Империи, отставанию от передовых стран, обострению ее внутренних противоречий, революции и к распаду в 1917 году.

3 технологический уклад. 1880-1930 годы. Катализатором нового технологического уклада снова стал двигатель – на этот раз электрический. Развивается тяжелое машиностроение, производство и прокат стали, строятся линии электропередач, бурно развивается неорганическая химия.

Группа лидеров: Германия, США, Великобритания, Франция, Бельгия, Швейцария, Нидерланды. Этот ТУ характеризуется повышением гибкости производства на основе использования электродвигателя, стандартизацией производства. Впечатляют успехи Соединенных Штатов Америки. Но еще больших успехов добились в Советском Союзе: ликвидируется неграмотность населения, неимоверными усилиями осуществляется электрификация страны, строятся металлургические и машиностроительные гиганты, и уже в следующий виток технологической гонки СССР вступает вместе с лидерами.

4 технологический уклад. 1930-1970 годы. По традиции «виновником» перехода к новому технологическому укладу стал двигатель – это двигатель внутреннего сгорания. Начинается повсеместное строительство автомобильных дорог. Лошадь окончательно уступила место трактору. Для прокорма железного коня требуется уже не уголь, а бензин. Боеспособность армии стала определяться количеством моторов, поставленных на автомобили, танки, самолеты и корабли. В промышленности налаживается массовое и серийное производство. Из цехов выходят тысячи танков и автомобилей. Естественно, что для получения бензина из нефти требуется развитие нефтехимии и всей органической химии в целом.

США, страны Западной Европы получили мощного конкурента – СССР, после войны имеющего армады танков, самолетов и развитую промышленную базу, способную очень быстро эту армаду увеличить еще больше. Настало время биполярного мира, гонки вооружений между двумя сверхдержавами. Следствием этой гонки стало стремительное освоение космоса и проникновение в тайны использования ядерной энергии.

Вся новейшая история так или иначе связана с борьбой государств за источники и рынки углеводородов – основных современных энергоносителей. Сталинградская битва, решившая исход Второй мировой войны, была, пожалуй, самой ожесточённой битвой во всей известной истории цивилизации. Такой накал битвы в пустынных и бедных степях Приволжья объясняется совсем не тем, что город имел имя Сталина. Тот, кто владел Сталинградом и Волгой, владел путями доставки Бакинской нефти, крайне необходимой для самолётов и танков воюющих держав.

Многие страны на постсоветском пространстве являются зоной стратегических интересов США, России и Евросоюза в основном потому, что являются транзитными для транспортировки газа в Европу.

С учётом того, что углеводородам в ближайшей перспективе нет достойной замены, уже сейчас начинается борьба за нефть и газ шельфа Северного ледовитого океана. Но хочется надеяться, что Человечество достаточно созрело для решения возникающих проблем мирным путём, и что найдётся новый источник энергии, знаменующий переход к новой энергетической эпохе, не связанной с безвозвратной и нещадной эксплуатацией невосполнимых ресурсов земных недр.

5 технологический уклад.1970-2010 годы. Увлекшись количеством тракторов и тоннами выплавляемой стали на душу населения, в Советском Союзе как-то пропустили появление сущей мелочи – полупроводникового диода и транзистора. Именно эти «безделицы» нарушили уже сложившуюся традицию, связанную с тем, что новый технологический уклад начинается с двигателя. Появление полупроводников обусловило рождение новой промышленности – электронной. Это лавинообразно вызвало развитие вычислительной, оптико-волоконной техники, программного обеспечения, телекоммуникаций, роботостроения, сферы информационных услуг.

США еще больше укрепили свои позиции, а Советский Союз, не начавший вовремя переход к новому технологическому укладу, проиграл и распался. На сцену вышел новый лидер – Китай.

Но глобальная конкуренция сегодня ведется не столько между странами, сколько между транснациональными воспроизводственными системами. Несколько таких систем, тесно связанных друг с другом, определяют глобальное экономическое развитие. Они формируют ядро мировой экономической системы, концентрирующее интеллектуальный, научно-технический и финансовый потенциал в развитых государствах.

Такие системы называются транснациональными корпорациями (ТНК). Эти корпорации, связанные с ядром мировой экономической системы, сегодня контролируют более половины оборота мировой торговли и финансов, наиболее прибыльные отрасли экономики разных стран, включая добывающую и наукоемкую промышленность, телекоммуникации, производственную инфраструктуру.

Многие ТНК превосходят по своему экономическому обороту крупные страны, подчиняют своему влиянию правительства, решающим образом воздействуют на формирование международного права и на работу международных институтов. Ведущие 500 транснациональных корпораций охватывают свыше трети экспорта обрабатывающей промышленности, 3/4 мировой торговли сырьевыми товарами, 4/5 торговли новыми технологиями, обеспечивают работу десяткам миллионам человек практически во всех странах мира.

Среди пятисот наиболее крупных и успешных фирм, действующих на мировом рынке: более двухсот – американских, около сотни – японских, чуть более полусотни – европейских.

К сожалению, ни одна российская компания к их числу не относится. Это свидетельствует о том, что Россия не вписалась в текущий технологический уклад и выбыла из числа мировых лидеров. Но не все потеряно, на дворе новая технологическая эпоха, последствия которой будут не менее захватывающими, чем результаты предыдущих.

6 технологический уклад. С 2010 года. Новым катализатором технического прогресса становятся нанотехнологии. Они определяют появление генной инженерии, развитие альтернативной энергетики, новых конструкционных материалов, лекарств и т.п.

В России есть все необходимые предпосылки для восстановления статуса технологической державы. Прежде всего, это наличие развитой системы образования, науки и промышленности. Это должно позволить нам научиться, наконец, разумно и бережно тратить огромные природные ресурсы, наличие которых должно стать нашим преимуществом, а не недостатком, тормозящим внедрение современных технологий в производство.

Темы для докладов и рефератов

Значение изобретения парового двигателя для экономического развития Англии.

Пути изменения технологического уклада в современной России.

Сколково – пилотный проект инновационного пути развития России.

История развития отдельных транснациональных корпораций.

Влияние различных технологических укладов на стратегию и тактику военных действий.

Влияние генной инженерии на развитие сельского хозяйства.

Дискуссии

Что нужно предпринять, чтобы Россия стала лидером нового технологического уклада?

Литература

    Данилов, Н.И. Использование ресурсов и энергии: учебное пособие для элективного курса «Энергосбережение» в старших классах / Н.И. Данилов, Ю.Н. Тимофеева, А.П. Усольцев, Я.М. Щелоков, В.Ю. Балдин. – Екатеринбург, 2010.

    Из истории науки / В.А. Тихомирова, А.И. Черноушан. – М.: Бюро Квантум, 1996.

    Кудрявцев, П.С. Курс истории физики: Учеб. пособие для студентов пед. ин-тов по физ. спец. -2-е изд., испр. и доп. / П.С. Кудрявцев. – М.: Просвещение, 1982.

    Лев, В.Г. Из чего всё: Научно-художественная литература / В.Г. Лев. – М.: Дет. лит. 1983.

    Надеждин Н.Я. История науки и техники / Н.Я Надеждин.- Ростов н/Д: Феникс, 2006.

    Официальный сайт журнала «Наука и жизнь». – www.nkj.ru.

    Сайт С.П. Курдюмова «Синергетика». - spkurdyumov.narod.ru.

ТЕХНОЛОГИЧЕСКИЕ УКЛАДЫ

Согласно теории длинных волн Н.Д. Кондратьева научно-техническая революция в мировом масштабе движется волнообразно с циклами протяженностью примерно в 50 лет. В соответствии с этим может быть рассмотрена эволюция технологических укладов (волн). Что представляет собой технологический уклад? Понятие «уклад» означает установившийся порядок чего-нибудь.

Несколько взаимосвязанных и последовательно сменяющих друг друга поколений техники, реализующих общий технологический принцип, формируют технологический уклад. Он строится на базе общих технологических принципов, обладает внутренней логикой развития, включает обычно четыре-пять сменяющих друг друга поколений техники. Первое поколение носит в значительной мере экспериментальный, разведывательный характер и имеет узкую сферу применения (например, ламповые компьютеры, первое поколение персональных компьютеров и сопровождавших их программ). Второе и особенно третье поколение стремительно распространяются и приносят наибольшую массу прибыли. Четвертое поколение приходится на фазу зрелости долгосрочного научно-технического цикла, а пятое - на фазу его упадка. Оно уже не дает реального прироста эффекта.

Ученые, изучающие проблемы социально-экономического развития стран, пришли к выводу, что, во-первых, развитие происходит волнообразно, в соответствии с теорией длинных волн Н.Д. Кондратьева, во-вторых, уровень социально-экономического развития определяется воздействием множества факторов: технологических, социальных, политических, культурных и др., в-третьих, движущей силой развития страны является уровень технологического и информационного развития.

Н.Д. Кондратьев начинал отсчет больших циклов конъюнктуры, а следовательно, и технологических укладов, с промышленной революции последней трети XVIII в., которая сопровождалась ростом научных открытий и технических изобретений.

В соответствии с теорией длинных волн выделяется пять технологических укладов (волн). Схематично эволюцию технологических укладов можно представить в следующем виде (рис. 1.1).

Рис. 1.1.

Первая волна (1785-1835 гг.) сформировала технологический уклад, основанный на новых технологиях в текстильной промышленности, использовании энергии воды.

Вторая волна (1835- 1885 гг.) связана с развитием железнодорожного транспорта и механического производства во всех отраслях на основе парового двигателя.

Третья волна (1885-1935 гг.) базируется на использовании в промышленном производстве электрической энергии, развитии тяжелого машиностроения и электротехнической промышленности на базе использования стального проката, новых открытий в области химии. Были внедрены радиосвязь, телеграф, автомобили, самолеты, начали применяться цветные металлы, алюминий, пластические массы и т.д. Появились крупные фирмы, картели, тресты. На рынке господствовали монополии и олигополии. Началась концентрация банковского и финансового капитала.

Четвертая волна (1935-1985 гг.) сформировала уклад, основанный на дальнейшем развитии энергетики с использованием нефти и нефтепродуктов, газа, средств связи, новых синтетических материалов. Это эра массового производства автомобилей, самолетов, тракторов, различных видов вооружения, товаров народного потребления. Появились и широко распространились компьютеры и программные продукты для них, радары. Атом используется в военных, а затем и в мирных целях. Организовано массовое производство на основе фордовской конвейерной технологии. На рынке господствует олигопольная конкуренция. Появились транснациональные и межнациональные компании, которые осуществляли прямые инвестиции на рынках различных стран.

Пятая волна (1985-2035 гг.) опирается на достижения в области микроэлектроники, информатики, биотехнологии, генной инженерии, новых видов энергии, материалов, освоения космического пространства, спутниковой связи и т.п. Происходит переход от разрозненных фирм к единой сети крупных и мелких фирм, соединенных электронной сетью на основе Интернет, осуществляющих тесное взаимодействие в области технологии, контроля качества продукции, планирования инноваций, организации поставок по принципу «точно в срок».

Каждый из укладов в своем развитии проходил различные стадии, отличающиеся мерой его влияния на общий экономический рост в стране. Устаревшие уклады, теряя свое решающее влияние на темпы роста, оставляли в составе национального богатства страны созданные производственные, инфраструктурные объекты, культурное наследие, знания и т.п.

Продолжительность некоторых волн больше 50 лет в связи с совпадением периода спада уходящей волны с периодом роста новой волны. В связи с ускорением НТП в будущем продолжительность волн (укладов) будет сокращаться.

Смена технологических укладов является содержанием и результатом волн базисных инноваций, которые распространяются из эпицентров - лидирующих стран и отраслей, радикально меняют технологическую структуру, экономики и служат основой повышательной стадии Кондратьевских циклов.

В рамках индустриального технологического уклада примерно раз в полвека сменяли друг друга технологические уклады, опиравшиеся на базисные инновации: освоение электричества, двигателей внутреннего сгорания, электроники, микроэлектроники, энергии атомного ядра, биотехнологии.

Смена преобладающих технологических укладов происходит в наше время примерно раз в полвека и является материально-технической основой перехода к очередному долгосрочному Кондратьевскому циклу. Такой смене предшествует технологический кризис, значительно усиливающий глубину и длительность экономического цикла. Н.Д. Кондратьев отмечал, что средние циклы как бы нанизываются на волны больших циклов; средние циклы, приходящиеся на понижательный период большого цикла, характеризуются длительностью и глубиной депрессий, краткостью и слабостью подъемов; в повышательной фазе большого цикла наблюдается обратная картина.

Аналогичные черты присущи долгосрочным и среднесрочным технологическим циклам, а также предшествовавшим им научным циклам, где фаза оживления (активного научного поиска) совпадает с периодом технологических и экономических кризисов.

Однако экономика любой страны никогда не бывает моноуклад- ной. Типичное явление - многоукладность. Одновременно существуют и взаимодействуют в разных секторах экономики несколько технологических укладов: преобладающий, определяющий достигнутый уровень конкурентоспособности и эффективности продукции и технологии; идущий ему на смену, находящийся в фазе инновационного освоения; вытесняемый, но сохраняющий свою силу в ряде секторов экономики; реликтовые уклады, представляющие давно прошедшие времена (например, примитивная техника прошлых веков, применяемая в личных хозяйствах населения - в саду, огороде, в домашнем хозяйстве).

Каждый технологический уклад имеет четко выраженную структуру, определяющую состав базисных и улучшающих инноваций и представляющую научно-технические направления на трех уровнях: базовые направления, пронизывающие все относящиеся к данному укладу поколения техники (технологии); поколения производственной техники, определяющие конкурентоспособность средств производства, источников энергии, используемых технологий; поколения техники, используемой в сфере платных и бесплатных услуг и в личном потреблении населения, а также в обороне и сфере управления. По каждому укладу можно определить период доминирования, технологических лидеров, ядро технологического уклада, его преимущества по сравнению с предшествующим, режимы экономического регулирования, основные экономические институты, организацию инновационной активности в странах-лидерах.

Технологически развитые страны перешли от четвертого к пятому технологическому укладу, вступив на путь деиндустриализации производства. В то же время по продукции четвертого технологического уклада проводится модификация выпускаемых моделей (например, автомобилей), чего вполне достаточно как для обеспечения платежеспособного спроса в своих странах, так и для удержания рыночных ниш за рубежом.

В технологическое ядро пятого технологического уклада включают Японию, США, Германию, Швецию, страны ЕЭС, Канаду, Южную Корею, Австралию. К элементам пятого технологического уклада относятся следующие.

Ядро технологического уклада: электронная промышленность, вычислительная техника, программное обеспечение, авиационная промышленность, телекоммуникации, оптические волокна, роботостроение, информационные услуги, производство и потребление газа.

Ключевой фактор уклада: микроэлектронные компоненты (в том числе микропроцессорная техника).

Формирующееся ядро нового технологического уклада: биотехнологии основные на генной инженерии (преимущественно на уровне микроорганизмов) космическая техника, тонкая химия.

Основные преимущества по сравнению с предыдущим четвертым технологическим укладом: индивидуализация производства и потребления, повышение гибкости и расширение разнообразия, преодоление экологических ограничений на энерго- и материалопотребление на основе автоматизации производства, деурбанизация размещения производства и населения в малых городах на основе новых транспортных и телекоммуникационных технологий и др.

В российской экономике по ряду объективных причин еще не полностью использован потенциал третьего и четвертого технологических укладов. Одновременно были созданы наукоемкие производства пятого технологического уклада. В табл. 1.1 приводится краткое содержание технологических укладов отечественной экономики.

Таблица 1.1

Краткое содержание технологических укладов отечественной экономики

В современной концепции теории инноватики принято выделять также такие понятия, как жизненный цикл продукции, жизненный цикл технологии производства. Жизненный цикл продукции состоит из четырех фаз. На первой фазе проводятся исследования и разработки по созданию нововведения-продукта. Заканчивается фаза передачей отработанной технической документации в производственные подразделения промышленных организаций. На второй фазе происходит технологическое освоение масштабного производства новой продукции. Как первая, так и в особенности вторая фаза, связаны со значительными рискоинвестициями, которые выделяются на возвратной основе. Последующий рост масштабов производства сопровождается снижением себестоимости продукции и ростом прибыли. Это дает возможность окупить инвестиции в первую и вторую фазы жизненного цикла продукции. Затем наступает третья фаза, особенностью которой является стабилизация объемов производимой продукции. На четвертой фазе происходит постепенное снижение объемов производства и продаж. На рис. 1.2 приводится укрупненная схема жизненного цикла продукции (включая инновационный процесс).


Рис. 1.2.

Жизненный цикл технологии производства также складывается из четырех фаз. Первая фаза связана с зарождением нововведений-процессов и осуществляется путем проведения широкого круга научно- исследовательских работ (НИР) технологического профиля. Вторая фаза связана с освоением нововведений-процессов на объекте. На третьей фазе происходит распространение и тиражирование новой технологии с многократным повторением на других объектах. Четвертая фаза включает рутинизацию, т.е. реализацию нововведений- процессов в стабильных, постоянно функционирующих элементных объектах.

На доминирование технологического уклада к течение продолжительного периода времени оказывает влияние государственная поддержка новых технологий в сочетании с инновационной деятельностью фирм и компаний. Нововведения-процессы улучшают качество продукции, способствуют снижению издержек производства и обеспечивают устойчивый потребительский спрос на рынке товаров.

Для обеспечения конкурентоспособности и эффективности экономики необходимо ориентировать научно-техническую и инновационную политику на своевременную разработку, освоение и распространение поколений техники и технологий перспективного технологического уклада. Однако при этом следует учитывать, что ни одна страна не имеет достаточно сил и средств, чтобы быть лидером во всех направлениях, составляющих структуру преобладающего и перспективного технологического уклада. Поэтому селективная государственная политика в этой сфере должна носить двухслойный характер: с одной стороны, поддержка и стимулирование освоения и распространения в разных отраслях и сферах деятельности поколений техники (технологии) преобладающего технологического уклада, определяющего конкурентоспособность на современном этапе и в ближайшей перспективе; с другой - поддержка разработки научных основ и пионерного освоения техники (технологии) следующего поколения или очередного технологического уклада, время преобладания которых на рынке придет через 10 лет и более. И в том и в другом случае нужно выделить сравнительно узкое поле технологического прорыва, в котором можно достичь рыночного успеха при имеющемся научно-технологическом заделе и возможных ресурсах. При этом, естественно, возможна кооперация с другими странами, что особенно важно в условиях технологической глобализации.

Контрольные вопросы и задания

  • 1. Назовите фазы длинных волн Н.Д. Кондратьева.
  • 2. Охарактеризуйте волновую теорию Й. Шумпетера.
  • 3. Назовите основные положения инновационной теории Й. Шумпетера.
  • 4. В чем состоит вклад С. Кузнеца в теорию инноваций?
  • 5. В чем заключается заслуга Г. Менша в развитии теории инноваций?
  • 6. Назовите закономерности инновационного обновления общества.
  • 7. Что такое технологический уклад?
  • 8. Дайте характеристику технологических укладов.
  • 9. Какие элементы образуют структуру технологического уклада?
  • 10. Назовите содержание 5-го технологического уклада отечественной экономики.

Структура большинства мировых держав построена на рыночной экономике. Это не идеальная и достаточно нестабильная система. Экономика постоянно то поднимается, то претерпевает спады, депрессии. Это цикличность системы, где каждый новый цикл приносит изменения в сложившийся технологический уклад. Объёмы переходят в качество, а производство модернизируется, переходя на следующий уровень. Все эти аспекты сильно влияют на экономику.

Технологический уклад – это определённый тип производственных отношений с особенной системой хозяйственной и организационной деятельности аспектов уклада.

«Технологический уклад» — история термина

Термин «родился» благодаря русскому ученому-экономисту Николаю Дмитриевичу Кондратьеву. В то время он занимал важный пост во временном правительстве под руководством Керенского, а позже возглавлял известный московский Конъюктурный институт.

Он изучал историю капитализма, когда «дошел» до идеи существования «волн» протяжённостью в 50-55 лет – экономических циклов, для которых свойственен конкретный уровень развития производственной массы («технологический уклад»). В большинстве своем они заканчиваются кризисом в мире, подобном недавнему, за которым обязательно должен быть переход производства на новый, более высокий уровень.

Определение

Технологический уклад – это совокупность технологий, свойственных для определённого производственного уровня. При помощи развития научной и технологической базы происходит переход от более старых порядков к новым и прогрессивным.

Уклад характеризуется:

  • Ядром;
  • Основным фактором;
  • Организационно-экономическим аспектом контроля.

Концепция технологических разделений подразумевает обустройство, чёткий порядок организации какой-либо деятельности.

Циклическое развитие

Рыночная экономика не развивается по прямо-восходящей линии. Ей свойственны изменения и колебания активности, которые выделяются в периодичность. В пределах неоклассического направления они определяются как циклы вокруг устоявшегося долгосрочного тренда.

Выделяются 2 мнения о причинах этого:

  1. Схоластическое – опирается на то, что факторы, приводящие к изменениям цикла, считаются случайными. Депрессия – это результат влияние на национальное хозяйство внутренних и внешних скачков.
  2. Детерминистическое – подразумевает, что цикличность вызвана конкретными факторами упадка или роста.

Эти две теории разработаны в отношении рыночной экономики, но они достаточно точно описывают и ситуацию с укладом.

Очевидные причины цикличности

Экономика и технический уклад – неразрывно связанные между собой вещи. Для понимания цикличности во втором, нужно разобраться с таковой в первом.

Национальное хозяйство – это та ресурсная отрасль, которая приводит к росту потребления. Во время расцвета или по достижению пика она способна полностью покрыть нужды своего населения. Но уже в кризисное время большинство людей переходят порог бедности.

На пиковой форме прибыль вкладчиков доходит до предела, из-за чего деньги концентрируются в экономике. Со временем снижается стандарт прибыли. Часть инвесторов, не желая терять доход (в сравнении с былым уровнем), уходит из страны. Это приводит к упадку. Низкие объёмы вложений постепенно приводят к сокращению производительных процессов, платёжеспособность масс стремится вниз. Кризис, развившийся в одной отрасли, постепенно переходит на всё хозяйство в целом.

Помимо снижения объёмов инвестирования, связанного со снижением стандартов прибыли, причиной спада становится устаревание технологической базы. Именно оно часто приводит к пиковой форме экономики. Термин «технологический уклад» является схожим понятием с «волной инновации» (последнее преимущественно используется в заграничных источниках). Он впервые был применён в работе учёного об аспектах технологического развития.

Технологический уклад России

Согласно общей теории выделяется шесть технологических отрезков, где последний ещё только начинает развиваться. В России о нём пока нет смысла говорить.

На территории страны доля пятого уклада приходится только на 10% производства, да и то в самых «выгодных» отраслях (военная промышленность, авиакосмический комплекс).

Больше половины текущих технологий относятся к четвёртому кладу, а примерно 1/3 – к третьему. Исходя из этого, несложно понять все препятствия и сложность, вставшие перед российской наукой. Ей нужно всего за 10 лет провести страну в число государств с шестым технологическим укладом. Для этого придется постараться и перепрыгнуть через уровень – через пятый этап.

Структура технологического уклада

Современное представление жизненного цикла концепции делится на 3 этапа развития и характеризуется временным отрезком в 100 лет.

Первичная фаза – зарождение и становление в экономике предыдущего технологического строя. Второй этап приходится на перестройку структур с оглядкой на новые производственные тенденции, соответствующие периоду уклада примерно в 50 лет. Третья фаза – отмирание текущего строя, во время чего зарождается новый.

Жизненный цикл технологического уклада Н. Кондратьева немного отличался. Теория была усовершенствована С.Ю. Глазьевым. Ученый выделил 5 технологических «бумов». Именно он разделил жизненный цикл не на две фазы, как предполагал Кондратьев (восхождение и снижение волны), а на три, характеризующиеся вековым временным отрезком.

Между 1-ым и 2-ым этапами выделяется монопольное время, когда отдельные предприятия развивают сильную монополию, растут, зарабатывая стабильно высокую прибыль, так как попадают под защиту законов об интеллектуальной и промышленной собственности.

Прямые изменения технологии считаются первичными. Они образуются в глубинах экономики старого уклада. По факту зарождение необычных решений – продуктов означает этап формирования технологического строя. При этом его медленное развитие на первых порах объясняется монопольной ситуацией отдельно взятых предприятий, которые первыми успели внедрить нововведения в дело. Они быстро и успешно растут, захватывая рынок и долю прибыли, находясь под защитой законов.

Технологический прогресс и рост сильно связаны. Волны приводят к созданию совершенно новых отраслей и вариантов для инвестирования средств, их развития, а также стимулируют общую экономическую ситуацию. После промышленной революции смена уклада произошла уже пять раз. Мнения экспертов касательно основных прорывных инноваций немного разнятся.

Первый технологический уклад

Он длился с 1785 по 1845 год. Его первые стадии связаны с изобретением прядильной машины и строительством малой текстильной фабрики.

Промышленная революция началась из-за первичных товаров, изначально из-за одежды. В то же время активно развивались технологи мореплавания, что привело к образованию огромных колониальных империй (британская, испанская, французская и другие). Строятся внутренние водные пути. Изобретения позволяют снизить траты на производство и перевозку товаров.

Длился с 1845 по 1900 год. Он был вызван скачком в мировой угольной отрасли. Уголь использовался в качестве основного источника энергии.

Также в это время изобрели паровой двигатель. В итоге была развита система ж/д перевозок, сформированы новые рынки и люди получили доступ к огромному числу ресурсов.

Пароход сильно повлиял на морские перевозки, еще больше расширив возможности интернациональной торговли. Хлопок производился в огромных объемах, потому случился новый толчок к развитию текстильного промысла.

Третий технологический уклад

Начался в 1900 и закончился в 1950 году. Главным событием этого времени было внедрение электричества.

Это позволило использовать в производстве ряд нового оборудования и приборов, дало возможность разработать городские транзитные системы (трамваи, метро).

Другой немаловажной инновацией стал двигатель внутреннего сгорания. На нём начала строиться вся автомобильная промышленность. В итоге выросла мобильность населения и грузов.

Четвертый технологический уклад

Продлился с 1950 по 1990 год. После Второй мировой войны были открыты новые материалы, к примеру, пластик, и отрасли электроники (разработка телевизоров). Произошел скачёк в авиационной промышленности благодаря появлению реактивных двигателей. Мобильность транспортировки грузов и людей стала максимально простой.

Пятый технологический уклад

С 1990 и по сегодняшний день. Современная волна уклада завязана на крупном внедрении информационных разработок. Они полностью изменили коммуникационную систему обычных людей и бизнеса. Информационные технологии повлияли на производственные и логистические процессы. Практически все отрасли промышленности задействуют в своей работе персональные компьютеры и прочую цифровую технику. Электронная коммерция и телекоммуникации крепко вжились в повседневную жизнь.

Сегодня планета стоит на пороге перехода к шестому технологическому укладу. Она только начинает показываться в развитых государствах вроде США, КНР и Японии. Цель – использование «высоких технологий», например био и нано отрасли, генную инженерию и квантовые технологии, темроядерную энергетику.

Технологические уклады (ТУ), экономика нанотехнологий и технологические дорожные карты нанопродукции (волокна, текстиль, одежда) до 2015 г. и далее

Приглашаем авторов публиковать свои материалы у нас на сайте (редакция NNN)

Глава из книги

Введение

Почему в одной главе и в определенной последовательности излагаются три проблемы: технологические уклады, экономика нанотехнологий и технологические дорожные карты нанопродукции (волокна, текстиль, одежда)?

По мнению автора, которое совпадает с точкой зрения ведущих ученых в области естественных и технических наук и, главное, по результатам практики, уровень технологий, их реализация, потребность в них определяли и определяют развитие цивилизации на протяжении нескольких тысячелетий. А экономика (ну куда же без нее) является вторичной, производной от технологий, которые определяют технологические уклады, уровень производительных сил и производственные отношения, а, следовательно, и экономику. Поэтому мы рассмотрим вначале роль технологических укладов в развитии цивилизаций, затем на этом фоне экономику нанотехнологий в широком смысле и экономику нанотехнологий волокон, текстиля и изделий из текстиля. И, наконец, дорожную карту производства нановолокон, нанотекстиля и изделий из него, как производную технологических укладов настоящего и будущего и экономики нанотехнологий текстиля.

Одежда будущего из нанотекстиля.
Фото с сайта veritas.blogshare.ru

Технологические и другие уклады прошлого, настоящего и будущего

Глава и книга в целом пишется в то время, когда мир еще не выбрался из глобального экономического кризиса, который не смогли предсказать самые именитые экономисты с мировыми именами, в том числе нобелевские лауреаты. Не только не предсказали, но и не дают толковых рекомендаций по выходу из этого кризиса. Куда уж тягаться в этом руководителям больших и малых, развитых и развивающихся государств. Дело в том, что все они экономисты, юристы, чекисты – люди с гуманитарным образованием, приходящие к власти и набирающие в свои команды людей близких по менталитету «группа крови», мыслят линейно, полагая, что мотором, локомотивом, двигателем прогресса являются финансы, деньги, технология их приращения любыми средствами, в том числе глобальной спекуляцией. Производство материальных ценностей, технологический уровень производства (в широком смысле), принципиально новые, революционные технологии и продукция по ним производимая ставятся ими на второй план. Такой монетаристский, очень модный среди экономистов и политиков взгляд на развитие мировой экономики, в которой, на самом деле, главной движущей силой являются новые революционные технологии, не позволяет предсказывать неизбежные кризисы и находить эффективные выходы из них.

Другого взгляда на развитие мировой экономики, на причины возникающих и преодолеваемых кризисов придерживаются ученые органически связанные с созданием и реализацией новых технологий (физики, химики, математики, материаловеды, инженеры, технологи, конструкторы).

Взгляды этих ученых (Г.Г.Малинецкий, С.Ю.Глазьев, Д.С.Львов ), которые разделяет и автор, опираются на труды советского ученого Н.Д.Кондратьева, который еще в 20-ые годы прошлого столетия выдвинул теорию больших циклов развития мировой экономики, которые и определяют в свою очередь неизбежность, цикличность кризисов и не только экономических. Экономический, современный, последний глобальный кризис обычно объясняют слишком большим увлечением финансовыми спекуляциями, что привело к непропорциональному перетоку капитала в финансовый сектор и оттоку из реального производительного сектора экономики. Итогом стало сворачивание производства (не только у нас, во всех развитых странных), сокращение рабочих мест, доходов нанятых работников и потеря устойчивости экономики. О неоправданном крене в сторону финансового сектора абсолютная, но не полная правда. Но в этом объяснении кризиса недооценена роль технологий, недоиспользование научно-технического прогресса, опоздание с коммерциализацией и продвижением в реальный сектор экономики и на рынок новой продукции, инновационных технологий, что стало результатом инерции бизнеса в переносе инвестиций на освоение в реальном секторе экономики высокопродуктивных прорывных инноваций конкурентоспособной продукции нового технологического уклада, теперь уже 6-го .

Что такое технологические уклады? Технологические уклады – комплекс, освоенных революционных технологий, инноваций, изобретений, лежащих в основе количественного и качественного скачка в развитии производительных сил общества.

Причина всех глобальных экономических кризисов лежит в сфере смены технологической парадигмы развития. Экономические кризисы возникают в период, когда общество, бизнес, политики запаздывают в осознании необходимости отказа (сначала частично, а затем почти полного) от действующего и необходимости поворота общества к освоению нового технологического уклада.

Кризис является расплатой за инерцию в смене технологической и, как следствие, экономической парадигмы.

Последний экономический кризис – глобальный, поскольку мир глобализован, интегрирован. Для выхода из кризиса, прежде всего, необходимо осознание их цикличности, неизбежности и выделение в качестве лимитирующей стадии и фактора освоения прорывных, революционных технологий.

В связи с такой доминирующей ролью технологий (инноваций) их классифицируют на революционные и эволюционные

  • революционные (прорывные), заменяющие технологии пионерские, нацеленные на создание принципиально новых продуктов, товаров, услуг или иных материальных благ;
  • эволюционные, улучшающие (продолжающиеся) инновации (технологии), нацеленные на совершенствование уже освоенных продуктов, товаров, услуг и т.д.

Эволюционные инновации и технологии полностью не уходят при переходе к новому технологическому укладу, но перестают играть доминирующую роль, уступая место революционным.

Мы можем наблюдать сосуществование революционных инноваций прошлого с революционными инновациями настоящего. Мы пока еще не отказались ни от одной их технологических революций далекого прошлого – колеса, более позднего книгопечатания, существующих сегодня наряду с авиацией и Интернетом.

Теория Н.Д.Кондратьева основана на циклическом характере социально-экономического развития по коротким, средним и длинным волновым циклам.

Согласно теории Н.Д.Кондратьева кризис возникает при совпадении впадин коротких, средних и длинных волн, которые происходят в период существования нашей цивилизации каждые 40–60 лет и приходятся на фазу смены технологических укладов.

Н.Д.Кондратьев предсказал кризис 30-х годов прошлого века. настоящий кризис также вытекает из теории Н.Д.Кондратьева; можно ожидать очередной кризис в 40–60-ые годы этого века. Такое циклическое развитие и адекватные ему кризисы видимо будут происходить пока не сменится сущность развития цивилизации и не произойдет переход к новой трансгуманистической цивилизации, где изменится биологическая сущность человека.

А пока, до настоящего времени, человечество в своем развитии последовательно осваивало технологические уклады, в каждом из которых происходили революционные скачки в производительности труда и качества жизни во всех областях по сравнению с предыдущими технологическими укладами.

Земная цивилизация в своем развитии прошла целый ряд доиндустриальных и не менее 6-ти индустриальных технологических укладов и сейчас развитые страны находится на 5-ом технологическом укладе и усиленно готовится к переходу в 6-ой технологический уклад, что обеспечит им выход из экономического кризиса. Те страны, которые запоздают с переходом в 6-ой технологический уклад, застрянут в экономическом кризисе и застое. Положение России очень сложное, поскольку мы из 4-го технологического уклада не перешли в 5-ый, в связи с деиндустриализацией промышленного потенциала СССР, т.е. не перешли в 5-ый постиндустриальный уклад и вынуждены, если нам это удастся, перескочить сразу в 6-ой технологический уклад. Задача архисложная, если не сказать почти невыполнимая, особенно при отсутствии промышленной политики у руководства страны. Известный тезис К.Маркса, на котором воспитывалось не одно поколение советских людей, о том, что производительные силы и производственные отношения определяют социально-экономический строй, можно в свете теории Н.Д.Кондратьева существенно откорректировать:

технологические уклады, уровень технологий определяют производительные силы и производственные отношения и между ними существуют прямые и обратные связи.

Большие периодические циклы

Доиндустриальные уклады базировались на мускульной, ручной, конной энергетике человека и животных. Все изобретения того времени, которые дошли и до нашего времени, касались усиления мускульной силы человека и животных (винт, рычаг, колесо, редуктор, гончарный круг, меха в кузнице, механическая прялка, ручной ткацкий станок).

Начало индустриальных периодов технологических укладов приходится на конец XVIII – начало XIX веков.

Первый технологический уклад характеризуется использованием энергии воды в текстильной промышленности, водных мельниц, приводов разнообразных механизмов.

Второй технологический уклад . Начало XIX – конец XIX века – использованием энергии пара и угля: паровая машина, паровой двигатель, паровоз, пароходы, паровые приводы прядильных и ткацких станков, паровые мельницы, паровой молот. Происходит постепенное освобождение человека от тяжелого ручного труда. У человека появляется больше свободного времени.

Третий технологический уклад . Конец XIX – начало XX века. Использование электрической энергии, тяжелое машиностроение, электротехническая и радиотехническая промышленность, радиосвязь, телеграф, бытовая техника. Повышение качества жизни.

Четвертый технологический уклад . Начало XX – конец XX века. Использование энергии углеводородов. Широкое использование двигателей внутреннего сгорания, электродвигатели, автомобили, тракторы, самолеты, синтетические полимерные материалы, начало ядерной энергетики.

Пятый технологический уклад . Конец XX – начало XXI века. Электроники и микроэлектроника, атомная энергетика, информационные технологии, генная инженерия, начало нано- и биотехнологий, освоение космического пространства, спутниковая связь, видео- и аудиотехника, Интернет, сотовые телефоны. Глобализация с быстрым перемещением продукции, услуг, людей, капитала, идей.

Шестой технологический уклад . Начало XXI – середина XXI века. Наступает внахлест на 5-ый технологический уклад, его называют постиндустриальным. Нано- и биотехнологии, наноэнергетика, молекулярная, клеточная и ядерная технологии, нанобиотехнологии, биомиметика, нанобионика, нанотроника и другие наноразмерные производства; новые медицина, бытовая техника, виды транспорта и коммуникаций, использование стволовых клеток, инженерия живых тканей и органов, восстановительная хирургия и медицина, существенное увеличение продолжительности жизни человека и животных.

Следует отметить важную характеристику смены технологических укладов: открытие, изобретение всех новшеств начинается значительно раньше их массового освоения. Т.е. их зарождение происходит в одном технологическом укладе, а массовое использование в следующем. Другими словами имеет место инерция делового и политического мышления бизнес и политэлиты. Капитал перемещается в новые технологические сегменты экономики, в которых менеджмент готов к перемещению.

Страны, общества быстрее почувствовавшие новации нового технологического уклада быстрее входят в него и оказываются лидерами (Англия – 2-ой технологический уклад, США, Япония, Корея – 4-ый технологический уклад, США, Китай, Индия – 5-ый технологический уклад).

Некоторые ученые уже начинают говорить о скором (в 21-ом веке) наступлении и 7-ого технологического уклада , для которого центром будет человек, как главный объект технологий.

Все что создано в предыдущем технологическом укладе не исчезает в следующем, оставаясь уже недоминирующим. Если бизнес и политическое руководство не чувствуют изменений в лидирующих позициях новых технологий, характерных для нового технологического уклада и продолжают инвестировать в старые производства, то возникает или продолжается кризис, т.к. капитал, инвестиции, менеджмент не успевает за инновациями. Типичный пример – Российский автопром, в который происходят постоянные вложения без инноваций. В результате продукция остается неконкурентоспособной. Следовательно, инновации, революционные технологии должны вовремя подкрепляться капиталом на всех стадиях: новые идеи, новые технологии, новая продукция с высокой добавленной стоимостью, продвижение продукции на рынок, получение прибыли, инвестиций в новые идеи и т.д. Все это может быть реализовано только при здоровой (без криминала) конкуренции во всех областях деятельности человека (политика, бизнес, наука, искусство, культура и т.д.).

На рисунке 1. в форме циклов показано содержание 4-го и 5-го технологических укладов и начало зарождения 6-го уклада, в котором нано-, био- и информационные технологии будут формировать, изменять экономику, социальную и культурную сферы. Опосредовано со сменой технологических укладов, сменяются циклы развития науки.

В следующих таблицах показана смена технологических укладов, циклов развития науки, последовательность геополитических кризисов, экстремумы научной активности и геоэкономические циклы.


Рисунок 1. Естественный цикл развития макротехнологий по Н.Д.Кондратьеву

Таблица. Циклы развития науки

Годы Циклы Ключевые принципы

Механистическое естествознание

Рационализм. Секуляризация науки. Научно-техническая революция

Эволюционизм

Закон сохранения энергии. Второе начало термодинамики. Происхождение биологических видов

Релятивизм. Квантовая механика

Принципы квантовой механики и теории относительности. Строение ДНК. Структура вещества

Компьютерная революция

Физика твердого тела. Генная инженерия. Молекулярная биология. Универсальный эволюционизм

Нелинейная наука. Физика квантового вакуума

Протоструктуры реальности. Универсальное космологическое поле. Квантовая биология

Таблица. Технологические уклады

Технологические уклады (ТУ) Годы Ключевые факторы Технологическое ядро

Текстильные машины

Текстиль, выплавка чугуна; обработка железа, водяной двигатель, канат

Паровой двигатель

Железные дороги, пароходы; угольная и станкоинструментальная промышленность, черная металлургия

Электродвигатель, сталелитейная промышленность

Электротехника, тяжелое машиностроение, сталелитейная промышленность, неорганическая химия, линии электропередач

Двигатель внутреннего сгорания, нефтехимия

Автомобилестроение, самолетостроение, ракетостроение, цветная металлургия, синтетические материалы, органическая химия, производство и переработка нефти

Микроэлектроника, газификация

Электронная промышленность, компьютеры, оптическая промышленность, космонавтика, телекоммуникации, роботостроение, газовая промышленность, программное обеспечение, информационные услуги

Квантово-вакуумные технологии

Нано-, био-, информационные технологии. Цель: медицина, экология, повышение качества жизни

Таблица. Технологические циклы и геополитические кризисы

Таблица. Экстремумы научной активности и геоэкономические циклы

Годы Циклы Научные открытия
1 2 3

становление I ТУ

1755 г. - прядильная машина (Уайт), 1766 г. - открытие водорода (Г. Кавендиш), 1774 г. - открытие кислорода (Дж. Пристли), 1784 г. - паровая машина (Дж. Уатт), 1784 г. - открытие закона Кулона (О. Кулон)

бифуркация между I ТУ и II ТУ

1824 г. - открытие II начала термодинамики (С. Карно), 1824 г. - теория электродинамических явлений (А. Ампер), 1831 г. - открытие электромагнитной индукции (М. Фарадей), 1835 г. - телеграф (С. Морзе), 1841-1849 гг. - открытие закона сохранения энергии (Р. Майер, Дж. Джоуль, Г. Гельмгольц)

бифуркация между II ТУ и III ТУ

1869 г. - периодическая система элементов (Д.И. Менделеев), 1865-1871 гг. - теория электромагнитного поля (Д. Максвелл), 1877- 1879 гг. - статистическая механика (Л. Больцман, Д. Максвелл), 1877 г. - кинетическая теория материи (Л. Больцман), 1887 г. - открытие электромагнитного излучения и фотоэффекта (Г. Герц)

начало III ТУ –

созревание III ГК

1895 г. - открытие рентгеновских лучей (В. Рентген),

1896 г. - открытие радиактивности (А. Беккерель),

1898г. - открытие полония и радия (П. Кюри, М.

Складовская-Кюри), 1899 г. - открытие квантов (М.

Планк), 1903 г. - открытие электрона (Дж. Томсон),

1903 г. - теория фотоэффекта (А. Эйнштейн), 1905г. -

специальная теория относительности (А. Эйнштейн),

1910 г. - планетарная модель атома (Э. Резерфорд, Н.

бифуркация между

III ТУ и IV ТУ IV ГК

1924 г. - концепция дуализма волна-частица (Л. Де

Бройль), 1926 г. - открытие спина (Дж. Уленбек, С.

Гаудсмит), 1926 г. - принцип запрета В. Паули, 1926 г.

Аппарат квантовой механики (Э. Шредингер, В.

Гейзенберг), 1927 г. - принцип неопределенности (В.

Гейзенберг), 1938 г. - релятивистская квантовая

теория (П. Дирак), 1932 г. - открытие позитрона (К.

Андерсон), 1938 г. - открытие деления урана (О. Ган,

Ф. Штрассман)

бифуркация между

IV ТУ и V ТУ V ГK

атомная энергетика, космонавтика, генетика и

молекулярная биология, физика полупроводников,

нелинейная оптика, персональный компьютер

Экономика нанотехнологий и нанопродукции текстильной и легкой промышленности

Рассмотрим экономику нанотехнологий и нанопродукции целиком и ее сегмент, соответствующий использованию нанотехнологий в производстве волокон, текстиля и одежды в соответствии с тем, что лидирующие страны переходят из 5-ого технологического уклада в 6-ой технологический уклад.

Безусловно нано-, био- и информационные технологии получили свое начальное развитие в конце 20-ого века, т.е. в конце 20-ого и в начале 21-ого веков и перешли и будут развиваться с еще большим практическим успехом в 6-ом технологическом укладе. Это подтверждают конкретные неопровержимые статистические данные и прогнозы по развитию этих направлений до середины 21-ого века (которые будут приведены ниже).

На рисунке 2 показан потенциальный мировой рынок нанопродукции, который к 2015 году по прогнозам составит 1,1 триллион DS. Как можно видеть, наибольший вклад вносят такие нанопродукты, как материалы (28%), электроника (28%) и фармацевтика (17%).

На рисунке 3 показана реальная динамика и перспектива доли нанотехнологий в мировой экономике до 2030 года. В 2015 г. нанотехнология и ее продукция составит ~ 15% мирового ВВП, то в 2030 г. уже 40%.

На рисунке 4 показана динамика зарегистрированных в мире патентов по нанотехнологиям. С 1900 г. по 2005 г. количество патентов выросло в 30 раз. При этом ~ 50% патентов приходится на США.


Рисунок 2.


Рисунок 3.


Рисунок 4.


Рисунок 5.

На этом рынке патентов большая часть приходится на наноматериалы (38%) и наноэлектронику (~25%) и нанобиотехнологию (~13%).

Интересна мировая структура распределения компания, занимающихся нанотехнологиями и нанопродуктами по странам (рисунок 5.)

И на этом рисунке видна доминирующая роль США, которой в разы уступают другие развитые страны.

В России зарегистрированы 200 зарубежных патентов и только 30 российских, что означает, что наш внутренний рынок нанопродукции потенциально легально завоеван импортной нанопродукцией, как это произошло с рынком лекарств, автомобилей, ауди- и видеотехники, текстиля, одежды и др. В период 2009–2015 гг. нанотехнологии будут развиваться с годовым приростом 11%, в том числе наноматериалы с 9,027 млрд. DS до 19,6 мдлр. DS с годовым приростом 14,7%, наноинструменты с 2,613 млрд.DS до 6,8 млрд.DS.

Объем рынка товаров, произведенных с помощью нанотехнологий будет расти в период 2010–2013 гг. с годовым приростом 49% и составит через 4 года – 1,6 трлн.DS.

Мировые инвестиции в нанотехнологии с 2000 по 2006 гг. увеличились в ~ 7 раз; первое место по этому показателю занимает США (~ 1,4 млрд. DS), Япония (~ 10 млрд. DS), ЕС (12 млрд. DS), весь остальной мир (12 млрд. DS).

Место России в мировой экономике наноиндустрии

Следует иметь ввиду, что Россия начала выстраивать наноиндутрию, развивать нанотехнологии при участии государства на 7–10 лет позже, чем страны-лидера этого направления (США, ЕС, Япония, Китай, Индия). С учетом этого и следует посмотреть на ниже приведенные статистические данные:

  • доля РФ в общемировом технологическом секторе составляет 0,3%;
  • доля РФ на мировом рынке нанотехнологий 0,004%;
  • к 2008 году зарегистрировано 30 патентов по нанотехнологии, т.е. 0,2% от общего числа патентов в мире;
  • наиболее развито в РФ производство приборов для анализа наноструктур (современные микроскопы);
  • производимые наноматериалы на 95% используются не в промышленности, а для научных исследований;
  • среди производимых наноматериалов основную долю составляют нанопорошки (самая простая нанотехнология). В РФ производят 0,003% нанопорошков от мирового производства;
  • нанопорошки в РФ – это, в основном, оксиды металлов (титан, алюминий, цирконий, церий, никель, медь), которые составляют 85% от всех нанопорошков;
  • углеродные нанотрубки в РФ производятся только в опытных партиях;

Реальный вклад нанотехнологий в мировую экономику иллюстрируют следующие цифры – в 2009 г. в мире было произведено 1015 продуктов по реальной нанотехнологии. Инвестиции в период 2006–2009 гг. возросли на 379%, с 212 наименований нанопродукции до 1015. Нанотекстиль (115 продуктов) занимает весомое место (~10%). Как и по другим интегральным показателям, лидирующее место за США (540 видов нанопродукции ~ 50%), юго-восточная Азия (240), ЕС (154). Россия в этих, как и в других, статистических данных по нанотехнологиям не упоминается.

Из нанопродуктов коллоидное наносеребро в различных видах (259 продуктов ~22%) занимает ведущее место, углеродные (в том числе фуллерены) – 82 продукта, двуокись титана – 50 продуктов.

Фуллерены в настоящее время производятся в мире ~ 500 тонн в год, одностенных и многостенных углеродных нанотрубок ~ 100 тонн в год, наночастиц кремния – 100000 тонн в год, наночастиц двуокиси титана ~ 5000 тонн в год, наночастиц двуокиси цинка 20 тонн в год.

Мировая экономика текстиля и одежды (краткая справка)

Перейдем от экономики нанотехнологий в мире к экономике текстильной и легкой промышленности, начав с общей конъюнктуры производства продукции этих отраслей, включая и производство волокон, без которых текстиль и многое другое не могут быть произведены.

Производство природных и химических волокон, текстиля всех видов и изделий из него традиционного и технического назначения является одним из основных секторов мировой экономики, занимая постоянно место не ниже 5-ого в пуле самых необходимых для человека и для техники (она тоже для человека) по валовому обороту, опережая мировой автопром, фармацевтику, туризм и вооружение.

Это общая картина («маслом»), но структура (география, ассортимент), сегменты производства и потребления волокон, текстиля и изделий из него существенно изменился:

  • производство традиционного массового текстиля, волокон, одежды переместился в развивающиеся страны с дешевой рабочей силой и мягкими требованиями к экологии и условиям труда. Мировым лидером (мировым сапожником и портным) стал Китай;
  • производство инновационной продукции с высокой добавленной стоимостью осталось в развитых странах;
  • существенно возросло производство волокон, используемых для производства домашнего, технического, медицинского и спортивного текстиля и соответственно эти секторы экономики текстиля заняли важное место в общем ассортименте;
  • значительная часть химических волокон, текстиля и одежды производится с использованием нано-, био- и информационных технологий, особенно в случае «умного», интерактивного, многофункционального текстиля, прежде всего, для защитной одежды в широком смысле слова;
  • наиболее динамически развивающимся видом текстиля стали нетканые материалы, производимые по разным (механическим, химическим) технологиям.

Наиболее развитые сегменты текстиля и структура ассортимента на 2008 год – Европа (ЕС): одежда 37%, домашний текстиль 33%, технический текстиль 30%.

Технический текстиль в мире прибавляет в год ~ 10–15%, а нетканые материалы растут на 30%.

В Германии технический текстиль в общем производстве текстиля составляет 45%, во Франции 30%, в Англии 12%.

ЕС остается одним из мировых лидеров по производству и экспорту текстиля, в 2008 году в ЕС произведено текстиля на 203 млрд. DS, в этом секторе экономики работает 2,3 млн.человек в 145 тысяч компаний (средняя численность на предприятии ~16 человек) и было произведено текстильной продукции на 211 млрд. DS при инвестиции в 5 млрд. DS.

Продолжается тенденция увеличения доли химических волокон и уменьшение доли природных: 2007 г. – химических волокон 65:, 2006 г – 62%. Производство химических волокон перемещается из США и Европы в развивающиеся страны.

В 1990 г. Западная Европа и США производили 40% всех химических волокон, а в 2007 г. только 12%. Напротив Китай в 1990 г. производил химических волокон только 8,7%, а в 2007 г. 55,8% от мирового производства, т.е. стал мировым лидером. В целом мировое производство текстиля растет: в 2007 г. было произведено текстиля на 4000 млрд. DS, а в 2012 г планируется произвести на 5000 млрд. DS.

Мировое производство нанотекстиля

2010 г. – «умного» нанотекстиля, произведено на 1,13 млрд. DS.

Технический нанотекстиль 2007 – 13,6 млрд. DS, в 2012 г. планируется произвести на 115 млрд. DS.

Медтекстиль – значительная часть производится по нанотехнологиям.

Мировое производство медтекстиля в 2007 г. в денежном выражении составило 8 млрд. DS. На рисунке 7 показана динамика роста производства медтекстиля в мире по годам (1995–2010 гг.).


Рисунок 7.

Значительное место в общем ассортименте текстиля занимает текстиль в изделиях для спорта и отдыха. В 2008 г. такой текстиль составил 10% от всего текстиля, произведенного в ЕС, лидером в этом секторе экономики является фирма Nike, производящая спортивного текстиля в 2008 г. на 18,6 млрд. DS.

Рынок одежды со встроенными наноэлектронными устройствами в 2008 г. составил 600 млн. DS.

Продуктово-технологические дорожные карты нано- и смежных высоких технологий

В последнее время стараниями политиков модным стало словосочетание «Дорожные карты» (впервые стали употреблять в конце прошлого 20-ого века американские политики «Road Map»). Взяв на вооружение известное понятие (Атлас дорог, дорожный Атлас) политики, ученые, технологи, экономисты наполнили его более широким смыслом, который сводится к следующему – дорожная карта должна определить:

  • конечную точку движения, т.е. цель проекта (государственную, политическую, технологическую, экономическую, экологическую и т.д.);
  • каким путем будет достигаться эта конечная цель (средства достижения: идеи, технологии, инвестиции, институции и т.д.);
  • временные, реперные точки; промежуточные, пофазные и время достижения конечной цели;
  • участники похода к цели (научные школы, корпорации, фирмы, инвесторы);
  • какие положительные эффекты (технологические, экономические, потребительские, экологические и др.) достигнуты и какие риски (экологические, социальные и др.) могут возникнуть и которые необходимо предотвратить.

Эти вопросы и требования к дорожным картам носят общий характер и относятся и к прогнозам в целом и к нанотехнологической продукции.

Наибольший интерес представляет технологические продуктовые дорожные карты, которых существует множество применительно к нанотехнологиям, как на глобальном уровне для мира в целом, так и для стран, развивающих нанотехнологию; разработаны и разрабатываются дорожные карты для ведущих отраслей экономики (электроника, здравоохранение, оборона и др.).

Технологические продуктовые дорожные карты для нанопродукции текстильной и легкой промышленности разрабатываются зарубежом, но пока они не носят целостный характер, часто сильно разнятся по набору продуктов и времени их выхода на рынок и это связано с тем, что обычные и нановолокна, текстиль, изделий из него используются в традиционных (одежда, обувь, спортивный и домашний текстиль) и новых областях (техника, медицина, косметика, архитектура и др.); другими словами производство нанотекстиля, как и традиционного является межотраслевой задачей, когда каждая область применения выставляет свои специфические требования и чрезвычайно трудно в дорожной карте отразить все эти особенности. Но мы попытаемся все же в какой-то мере эту задачу решить. Дорожные карты – это не просто план, программа какого-то проекта, они составляются на длительный период (10–30 лет) и учитывают эволюцию развития главной технологии (в нашем случае нанотехнологии), но и смежных с нею и необходимых для ее реализации (в нашем случае био-, инфо- и другие высокие технологии) областях.

Составление дорожных карт требует глубокого анализа специалистами высочайшего уровня разного научного и практического направлений (физики, математики, химики, материаловеды, психологи, экономисты и др.), поскольку нанотехнология междисциплинарная проблема. Грамотно составленная дорожная карта, учитывая эволюцию и взаимное влияние (в том числе, синергизм) всех смежных технологий, указывает не только трассу, маршрут создания продукта, но его эволюцию по дороге к конечной временной точке.

Дорожные карты не конечный, застывший продукт, а постоянно развивающийся инструмент, учитывающий постоянные изменения в возможностях науки, развития технологий, растущие потребности общества и техники.

Дорожные карты, как правило, являются продуктом коллективного творчества значительной группы высококвалифицированных экспертов или результатом тщательного анализа литературы, широкого круга источников (научные статьи, патенты, обзоры и др.).

Потребность в дорожных картах в настоящее время возникла и возрастает, поскольку научно-технический прогресс становится стремительным, ускоряющим, сжимающим временной лаг от идеи до ее реализации в продукт. Но даже за это время действия дорожной карты возникают новые идеи и технологии, которые необходимо учитывать в дорожных картах.

А поскольку составление дорожных карт требует инвестиций и немалых, то вероятно, в ближайшем будущем инвесторы будут требовать у запрашивающего инвестиции и дорожные карты наряду с бизнес-планом. Следует отметить, что, к сожалению, в нашей стране к составлению дорожных карт приступили совсем недавно, лидером этого направления является Государственный Университет ВШЭ, выполняющий заказы РосНано по разным отраслям использования нанотехнологий.

Пока отрасли текстильной и легкой промышленности не стали объектом внимания каких либо федеральных структур (Минобрнауки, Минпромторг РФ), как заказчиков технологической продуктовой дорожной карты для этих отраслей.

Поэтому автор взял на себя смелость (может излишнюю) и инициативу составить технологическую дорожную карту нанопродукции в текстильной и легкой промышленности, включая и нановолокна (химическая промышленность). Предлагаемая дорожная карта составлена на основании анализа нескольких сотен литературных источников (за последние 10–15 лет), опыта и интуиции (как правило, не обманывала) автора. Дорожная карта составлена применительно к странам-лидерам в области нанотехнологий (США, Германия, Англия, Скандинавские страны, Япония, Китай, Индия), но в ней отмечены продукты и технологии, представляющие интерес для реализации в России.

Автор выражает убедительную просьбу заинтересовавшихся этой безусловно субъективной картиной развития нанотехнологии в текстильной и легкой промышленности присылать свои замечания и пожелания, которые позволят эту картину («маслом») приблизить к реалиям сегодняшнего дня и 10–30-летнего будущего. Заранее благодарен за любую критику.

Первоначально был составлен список ключевых слов, т.е. набор нанопродуктов наиболее часто описываемых в литературе по следующим ассортиментным группам:

  • защитная одежда (в широком смысле от множества опасных действий), используемая в различных областях (цивильных, оборонных, внештатных);
  • волокна;
  • обычная повседневная одежда;
  • модный текстиль;
  • домашний текстиль;
  • спортивный текстиль;
  • текстиль в медицине;
  • текстиль в косметике;
  • текстиль в технике:
    • композиты конструкционные;
    • геотекстиль;
    • строительный текстиль.

При составлении дорожной карты были учтены следующие важные отраслевые особенности:

– многофункциональные текстильные материалы нового поколения производятся по классической схеме: производство волокон (природных, химических) – прядение (пряжа) – ткачество (вязание, плетение, производство нетканых материалов) – химическая технология (беление, крашение, печатание, заключительная отделка).

От этой классической схемы, отдельные фазы которой в редких случаях могут быть опущены, никуда не уйдешь. Но к этой необходимой долгой технологической цепочке для получения волокон, текстиля, одежды, технических изделий с новыми свойствами на разных стадиях добавляются в сочетании (часто) нано-, био- и информационные технологии. Наиболее интересные новые свойства и эффекты достигаются именно при сочетании этих трех высоких технологий, синергически влияющих друг на друга и на мультифункциональность материала.

Из этого положения следует очень важное замечание. Классическая текстильная технологическая цепочка и ее индустриальная реализация (текстильные фабрики) являются обязательной производительной платформой, на которую монтируются и нано- и био- и информационные технологии. Сами по себе они повисают в воздухе и не являются самоцелью, а только могут быть приправой к основной еде. Но без этих технологий нельзя получить волокна, текстиль, одежду с принципиально новыми свойствами.

Рекомендации для производства нанопродукции (волокна, текстиль, одежда) должны учитывать состояние и возможности отечественных отраслей текстильной и легкой промышленности, состояние науки в этой области, наличие специалистов, а не только потребность в этих продуктах.

Необходимо было определиться, какую продукцию относить к нанопродукции. Эта проблема обсуждается в мировой литературе, и она возникает при экономической оценке и статистике.

Как и в других отраслях всю нанопродукцию, появляющуюся на рынке можно разделить на две неравные группы:

  1. получена по «рафинированной» нанотехнологии («снизу-вверх», «сверху-вниз»), соответствующей определению нанотехнологии, как «манипуляции наночастицами с формированием строгой упорядоченной структуры, с принципиально новыми свойствами, обусловленными именно наноразмерами и наноструктурой макрообъекта». Так «чисто» работает живая природа по синтезу белков, углеводов и других биологических макрообъектов.

    Рукотворно такая нанотехнология только начинает зарождаться и пионерами являются электроника (переход от микро- к наноэлектронике). Таких чистых нанопродуктов пока еще не более 5–10%.

  2. «нанопродукты» (кавычки при определенных оговорках можно убрать), полученные с использованием наночастиц и нанообъектов, произведенных по «чистой» нанотехнологии (углеродные нанотрубки, окислы металлов, алюмосиликаты, наноэмульсии, нанодисперсии, нанопены и др.).

    Таких продуктов отнесенных к нановолокнам, нанотекстилю, наноодежде множество. Их можно назвать изделиями с применением элементов нанотехнологий. При том они приобретают полезные новые и улучшенные свойства.

Ниже приведены продуктовые наборы для нанопродукции основных видов ассортимента.


Рисунок 8.

  1. (МТ) – Медтекстиль
  2. (ТТ) – Технический текстиль
  3. (ЗТ) – Защитный текстиль
  4. (ДТ) – Домашний текстиль
  5. (СТ) – Спортивный текстиль
  6. (МдТ) – Модный текстиль

Первоначально в список ключевых нанопродуктов было включено более 100 наименований различного ассортимента, значимости, продвинутости (технологической, коммерческой, социальной). Путем отбора и агрегации по назначению и технологии в списке осталось 50 нанопродуктов.

ПРОДУКТОВЫЙ НАБОР ДЛЯ группы «НАНОВОЛОКНА»

(количество звездочек характеризует значимость продукта для российской экономики)

1****/** – Нановолокна, полученные методом электропрядения;

2****/** – Сверхпрочные нановолокна, композитные, наполненные наночастицами для композитных конструкционных материалов;

3/* Нановолокна и изделия, обеспечивающие распределение веса пилотов (водителей) и пассажиров различных видов транспорта;

4/ – Токопроводящие волокна и изделия для замены медного кабеля в автомобиле и других видах транспорта;

5****/ – Углеродные нановолокна (в композитах, в медицине, спортивный инвентарь);

6/ – Способные окрашиваться нанонаполненные полиолефиновые волокна;

7/** – Генномодифицированный паучий шелк;

8/* – Целлюлоза микробиологического происхождения;

9***/* – Генномодифицированная конопля;

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «ЗАЩИТНЫЙ ТЕКСТИЛЬ ОТ ВНЕШНЕЙ СРЕДЫ»

1****/** – Текстиль и одежда, регулирующая температурно-влажностной режим в пододежном пространств;

2/*- Текстиль и одежда поглощающие, сохраняющие и трансформирующие энергию тела;

3****/* – Одежда, предупреждающая и защищающая от вредных внешних воздействий (токсичные вещества, радиация, биологическое оружие);

4/*** – Огнезащищенная ткань и одежда;

5/ - Домашний текстиль, одежда, поглощающая вредные и неприятные запахи;

6****/*** – Антибактериальный, антивирусный текстиль;

7/** Термобелье (постельное, нательное);

8****/ – Маскировочный (от приборов ночного видения) текстиль, одежда и укрытия для техники;

9****/**** – Пуленепробиваемая одежда;

10/ – Водо- и маслоотталкивающий текстиль;

11***/** – Репелентный текстиль и одежда, защищающие от кровососущих насекомых.

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «ТЕХНИЧЕСКИЙ ТЕКСТИЛЬ»

1/* – Текстиль с пьезоэлектрическими свойствами;

2/* – Растяжимые сенсорные волокна, текстиль для гибких дисплеев и наноодежды;

3/* – Текстиль для солнечных панелей;

4/* – Геотекстиль следящий за состоянием грунта и укрепляющий грунт;

5/* – Текстиль для нанокомпозитной (прозрачной) кровли и других архитектурных покрытий;

6****/ – Фильтры для воды и воздуха из нановолокон и нетканных материалов;

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «МЕДИЦИНСКИЙ И КОСМЕТИЧЕСКИЙ ТЕКСТИЛЬ»

1/** – Водоотталкивающий, антисептический, антимикробный текстиль и одежда для медперсонала и больных;

2/* – Одежда, мониторящая состояние организма (пульс, давление, вес);

3/* – Волокна и текстиль для искусственных мышц, сосудов, суставов, хрящей, легких, печени, почек, сердечных клапанов, шовного материала, для имплантатов с памятью форм;

4/ - Лечебные раневые покрытий нового поколения (восстановительная хирургия) с контролируемым высвобождением лекарств и их адресной доставкой к поврежденной ткани и органам;

5/- Обезболивающий, кровеостанавливающие текстиль для стоматологии;

6/- Лечебные косметические маски, как депо лекарственных и косметических препаратов;

7/* – Защитный текстиль для рентгенологии;

8/* – Биоплатформы из текстиля для восстановительной хирургии (имплантаты);

9/* – Фильтры из нановолокон для респираторов, аппаратов гемодиализа и трансфузионных приборов;

10***/** – Гигиенический текстиль на основе нановолокон, нанобиоцидов;

11/ – Лечебное белье, как депо лекарственных препаратов;

12**/* – Волокна для регенерации костей на основе композитов;

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «СПОРТИВНЫЙ ТЕКСТИЛЬ»

1/ – Композиты на основе углеродных нановолокон для спортинвентаря (Формула 1, бобслей, катера, лыжи, копья и т.д.);

2/ – Сенсорная одежда для мониторинга состояния организма спортсмена во время тренировок;

3/ – Костюмы пловцов с высокими гидродинамическими свойствами;

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «ДОМАШНИЙ ТЕКСТИЛЬ»

1*/- – Панели из текстиля, изменяющие по программе рисунок и цвет (цветомузыка);

2*/- – Матрасы из текстиля, изменяющие эргономическую форму;

3***/- – Антимикробное пастельное белье и банные принадлежности;

ЭЛЕКТРОННЫЙ (СЕНСОРНЫЙ) ТЕКСТИЛЬ

1***/- – Одежда с интегрированными ауди-, видеотехникой, коммунитирующая с внешними приемниками и передатчиками;

2*/- – Электронный текстиль для гибких дисплеев и для навигационных систем;

ПРОДУКТОВЫЙ НАБОР ДЛЯ ГРУППЫ «МОДНЫЙ ТЕКСТИЛЬ»

1/ – Текстиль «хамелеон» (термохромный);

2*/- – Текстиль светящийся;

3/ – Ароматизированный текстиль;

(из 50-ти продуктов 31 – нужны, и 18 – можем производить при создании для этого условий).

Были оценены по следующим 18-ти показателям (см.анкету на примере «Раневые покрытия»), предложенным автором.

  1. Наименование продукта Раневые покрытия нового поколения с контролируемым высвобождением и адресной доставкой лекарств
  2. Ассортиментная группа (группы) Медтекстиль
  3. Фундаментальный научный базис Массоперенос наночастиц в организме; механизм заживления патогенных тканей на клеточном и молекулярных уровнях
  4. Технология (-и) Нано- и биотехнологии
  5. Области применение Заживление ран, ожогов, пролежней, язв, онкологических новообразования ближнего залегания (кожа, слизистые, шея, гинекология и др.)
  6. Присутствие на мировом рынке Одно из важных направлений в восстановительной хирургии и в сочетанных методах лечения раковых заболеваний
  7. Присутствие на Российском рынке Присутствует
  8. Производится ли в России производится под торговом названием «Колетекс»
  9. Может ли производиться в России (проблемы) Требуется расширение производства в соответствии с растущими потребностями
  10. Нужно ли производить в России Да
  11. Будет ли конкурентоспособным Безусловно, пока не имеет аналогов мировых
  12. Нужно ли импортировать в Россию Нет
  13. Можно ли производить в кооперации с другими странами Да
  14. Риски (экономические и др.) от производства и применения Минимальные, т.к. доставка лекарства адресная
  15. Участники Производство ООО «Колетекс», ООО «Текстильпрогресс» ИАР
  16. Участники. НИИ и другие научно-исследовательские организации Минпромторг РФ, Минсоцразвития РФ, НИИ РАМН и РАН, ВУЗы, ведущие лечебные учреждения РФ
  17. Необходимость подготовки специалистов В текстильных и родственных ВУЗах
  18. «Чистая» нанотехнология (НТ) или элементы НТ Элементы Нано- и биотехнологий

Как можно видеть анкета предлагает множество показателей, необходимых учитывать для составления дорожной продуктовой карты для мира и РФ. Можно было бы предложить и большее количество параметров для оценки каждого продукта, что затруднило бы работу с ней экспертов, а дополнительной информации не дало бы. Приводим список наиболее значимых и актуальных продуктов, их оказалось 50. перед каждым продуктом проставлены дроби / , где в числителе – потребность для РФ, а в знаменателе – возможность производства, количество * характеризует уровень значимости фактора.

Ниже, на рисунках представленные 6 наиболее значимых групп продуктов по их назначению и их потребность для экономики РФ и возможности их производства в РФ.

Анализ многочисленных источников показывает, что наиболее значимым для России являются следующие группы текстильной нанопродукции (значимость убывает в ряду): медицинский текстиль, защитный текстиль, технический текстиль, домашний текстиль, спортивный текстиль, модный текстиль.

По возможностям производства этой продукции в РФ они располагаются в следующий ряд по убыванию: технический текстиль, защитный текстиль, медицинский текстиль, домашний текстиль, спортивный текстиль, модный текстиль.

Конечно, приведенные оценки являются усредненными в каждой группе, где внутри разные продукты могут существенно отличаться по значимости и возможностям производства. Разница между ними (значимостью и возможностью производства) должна будет компенсироваться импортом, что уже происходит в настоящее время, когда эта разница огромная.

В анкете для примера приведены характеристические данные одного продукта из группы медицинского текстиля «Раневые покрытия нового поколения». Такая подробная характеристика была составлена для всех отобранных нанопродуктов основных ассортиментных групп.

На рисунке 1–5 по пяти группам для каждой графически расположены продукты в координатах «потребность/возможность», что позволяет принять решение о рекомендации конкретных продуктов по трем направлениям:

  • производить;
  • закупить технологию и по ней производить;
  • закупать продукты.


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Медицинский текстиль»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Защитный текстиль»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Нановолокна»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Технический текстиль»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Модный текстиль»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Домашний текстиль»


Рисунок. Соотношение потребностей и возможности производить в РФ для группы «Электронный (сенсорный) текстиль»

Конечно эти рекомендации для федеральных органов, бизнеса и отдельных производителей волокон, текстиля и одежды носят сугубо экспертную оценку, однако они основаны на изучении очень большого массива зарубежных данных (более 1000 зарубежных публикаций за последние 5–10 лет специалистов из США, Германии, Англии, Японии, Китая, Индии), а также отечественных источников.

В случае проявленного интереса со стороны заинтересованных организаций и персоналий по каждому продукту в соответствии с предлагаемой анкетой можно представить характеристику данного продукта, а также предложить технологии для его производства, которые существуют у нас в РФ (очень мало) или их надо разработать или нужно приобрести зарубежом и адаптировать к нашим условиям. Или, наконец, приобрести данную продукцию на мировом рынке.

Заинтересованные организации и персоналии абсолютно свободны в своих дальнейших действиях. Любая система стратегического планирования, в том числе и Форсайт ничего другого предложить не может. Далее начинается инициатива государства, бизнеса, ученых, технологов.

Г.Е.Кричевский
Профессор, д.т.н.,
Засл. деятель науки РФ

КРИЧЕВСКИЙ Герман Евсеевич ,профессор, доктор технических наук, заслуженный деятель РФ, эксперт ЮНЕСКО, академик РИА и МИА, Лауреат Госпремии МСР

Окончил Московский текстильный институт им. А.Н. Косыгина по специальности «Химическая технология и оборудование отделочного производства», в 1961 году защитил кандидатскую диссертацию, а в 1974 году – докторскую диссертацию по проблемам химии и физической химии применения активных красителей. С 1956 по 1958 год работал на Московской отделочной фабрике им. Я.М. Свердлова начальником химстанции. Работал в качестве эксперта ЮНЕСКО в Бирме (1962 г.) и Индии (1968 г.). С 1980 по 1990 гг. руководил кафедрой «Химическая технология волокнистых материалов» в МТИ им. А.Н. Косыгина и созданной при этой кафедре Отраслевой Лабораторией Минлегпрома. В 1992 году перешел в РосЗИТЛП на должность зав. кафедрой Текстильного колорирования и дизайна и руководит ей по сей день. Профессор Г.Е. Кричевский также является президентом Российского союза химиков текстильщиков и колористов, генеральным директором НПО «Текстильпрогресс» РИА, главным редактором журнала «Текстильная химия».

За большой вклад в отечественную науку профессору Г.Е.Кричевскому присвоено звание Заслуженного деятеля науки РФ; в 2008 г. Указом Президента Российской Федерации награжден Орденом Почета.